Article

Reduction of motion artifacts in cine MRI using variable-density spiral trajectories

Stanford Medicine, Stanford, California, United States
Magnetic Resonance in Medicine (Impact Factor: 3.4). 04/1997; 37(4):569-75. DOI: 10.1002/mrm.1910370416
Source: PubMed

ABSTRACT Dynamic cardiac imaging in MRI is a very challenging task. To obtain high spatial resolution, temporal resolution, and signal-to-noise ratio (SNR), single-shot imaging is not sufficient. Use of multishot techniques resolves this problem but can cause motion artifacts because of data inconsistencies between views. Motion artifacts can be reduced by signal averaging at some cost in increased scan time. However, for the same increase in scan time, other techniques can be more effective than simple averaging in reducing the artifacts. If most of the energy of the inconsistencies is limited to a certain region of kappa-space, increased sampling density (oversampling) in this region can be especially effective in reducing motion artifacts. In this work, several variable-density spiral trajectories are designed and tested. Their efficiencies for artifact reduction are evaluated in computer simulations and in scans of normal volunteers. The SNR compromise of these trajectories is also investigated. The authors conclude that variable-density spiral trajectories can effectively reduce motion artifacts with a small loss in SNR as compared with a uniform density counterpart.

0 Followers
 · 
121 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Arterial Spin Labeling (ASL) can be implemented by combining different labeling schemes and readout sequences. In this study, the performance of 2D and 3D single-shot pulsed-continuous ASL (pCASL) sequences was assessed in a group of young healthy volunteers undergoing a baseline perfusion and a functional study with a sensory-motor activation paradigm. The evaluated sequences were 2D echo-planar imaging (2D EPI), 3D single-shot fast spin echo with in-plane spiral readout (3D FSE spiral), and 3D single-shot gradient-and-spin-echo (3D GRASE). The 3D sequences were implemented with and without the addition of an optimized background suppression (BS) scheme. Labeling efficiency, signal-to-noise ratio (SNR), and gray matter (GM) to white matter (WM) contrast ratio were assessed in baseline perfusion measurements. 3D acquisitions without BS yielded 2-fold increments in spatial SNR, but no change in temporal SNR. The addition of BS to the 3D sequences yielded a 3-fold temporal SNR increase compared to the unsuppressed sequences. 2D EPI provided better GM-to-WM contrast ratio than the 3D sequences. The analysis of functional data at the subject level showed a 3-fold increase in statistical power for the BS 3D sequences, although the improvement was attenuated at the group level. 3D without BS did not increase the maximum t-values, however, it yielded larger activation clusters than 2D. These results demonstrate that BS 3D single-shot imaging sequences improve the performance of pCASL in baseline and activation studies, particularly for individual subject analyses where the improvement in temporal SNR translates into markedly enhanced power for task activation detection.
    NeuroImage 11/2012; 66. DOI:10.1016/j.neuroimage.2012.10.087 · 6.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spiral acquisition schemes offer unique advantages such as flow compensation, efficient k-space sampling and robustness against motion that make this option a viable choice among other non-Cartesian sampling schemes. For this reason, the main applications of spiral imaging lie in dynamic magnetic resonance imaging such as cardiac imaging and functional brain imaging. However, these advantages are counterbalanced by practical difficulties that render spiral imaging quite challenging. Firstly, the design of gradient waveforms and its hardware requires specific attention. Secondly, the reconstruction of such data is no longer straightforward because k-space samples are no longer aligned on a Cartesian grid. Thirdly, to take advantage of parallel imaging techniques, the common generalized autocalibrating partially parallel acquisitions (GRAPPA) or sensitivity encoding (SENSE) algorithms need to be extended. Finally, and most notably, spiral images are prone to particular artifacts such as blurring due to gradient deviations and off-resonance effects caused by B(0) inhomogeneity and concomitant gradient fields. In this article, various difficulties that spiral imaging brings along, and the solutions, which have been developed and proposed in literature, will be reviewed in detail.
    Magnetic Resonance Imaging 07/2010; 28(6):862-81. DOI:10.1016/j.mri.2010.03.036 · 2.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present an acquisition and reconstruction method designed to acquire high resolution 3D fast spin echo diffusion tensor images while mitigating the major sources of artifacts in DTI-field distortions, eddy currents and motion. The resulting images, being 3D, are of high SNR, and being fast spin echoes, exhibit greatly reduced field distortions. This sequence utilizes variable density spiral acquisition gradients, which allow for the implementation of a self-navigation scheme by which both eddy current and motion artifacts are removed. The result is that high resolution 3D DTI images are produced without the need for eddy current compensating gradients or B0 field correction. In addition, a novel method for fast and accurate reconstruction of the non-Cartesian data is employed. Results are demonstrated in the brains of normal human volunteers.
    NeuroImage 01/2010; 49(2-49):1510-1523. DOI:10.1016/j.neuroimage.2009.09.010 · 6.13 Impact Factor