Borderline methicillin-susceptible Staphylococcus aureus strains have more in common than reduced susceptibility to penicillinase-resistant penicillins.

Institute of Microbiology, University of Ancona Medical School, Italy.
Antimicrobial Agents and Chemotherapy (Impact Factor: 4.45). 01/1997; 40(12):2769-74.
Source: PubMed

ABSTRACT Ten epidemiologically unrelated Staphylococcus aureus isolates with borderline levels of susceptibility to antistaphylococcal penicillinase-resistant penicillins (PRPs) were investigated together with appropriate S. aureus control strains. By a nitrocefin microplate assay, all borderline PRP-susceptible test strains were found to produce comparable amounts of beta-lactamase. Hydrolytic activity against another chromogenic substrate (PADAC) and against the PRPs was also demonstrated in membrane preparations from induced cells of 9 of the 10 borderline test strains. When bacterial membranes were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, two methicillin-inducible bands of about 32 and 31 kDa were detected, after Coomassie blue staining, in the membrane protein patterns of the same nine borderline test strains. By gel renaturation and zymographic detection of beta-lactamase activity, both methicillin-inducible membrane proteins were detected with nitrocefin as a substrate, whereas only one band (presumably the smaller protein) was detected with PADAC. With the remaining borderline test strain (a40), only the larger band was detected in the renatured gels with nitrocefin as a substrate. Plasmid DNA analysis revealed that the borderline susceptible test strains, again with the exception of a40, shared a 17.2-kb plasmid yielding four HindIII fragments of 7.0, 5.3, 3.5, and 1.4 kb. In Western blot (immunoblot) experiments using rabbit antiserum to penicillin-binding protein (PBP) 2a, test strain a40, which did not share a number of features characteristically associated with the other borderline test strains, was eventually shown to produce PBP 2a. Five other S. aureus strains, belonging to phage group 94/96, were found to display the borderline phenotype, including such distinguishing features as the membrane-associated PRP- and PADAC-hydrolyzing activity, the two methicillin-inducible membrane proteins, and the 17.2-kb plasmid. These results suggest that borderline susceptible S. aureus strains share more common features than reduced susceptibility to PRPs.


Available from: Orietta Massidda, May 30, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The emergence of methicillin-resistant Staphylococcus aureus (MRSA) infection in dairy animals is of great concern for livestock and public health. The aim of present study was to detect new trends of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA) towards antibiotic susceptibility, resistance genes and molecular typing by methods of disc diffusion, multiplex PCR assay and multilocus sequence typing (MLST). A total of 219 S. aureus strains were isolated from bovine mastitis cases from six provinces of China, including 34 MRSA strains. The results revealed that more than 70% isolated strains showed resistance to various antibiotics, and multiple-drugs resistance to more than five categories of antibiotics was found more common. The ermC was the most prevalent resistance gene, followed by other genes; however, ermA was the least frequently detected gene. Twenty-eight mecA-negative MRSA and six mecA-positive MRSA strains were detected, and in which three strains were ST97-MRSA-IV, others were ST965-MRSA-IV, ST6-MRSA-IV and ST9-MRSA-SCCmec-NT. The mecA-negative MRSA strains were found resistant to most of the antibiotics, and harbored aac(6')/aph(2''), aph(3')-III and tetM genes higher than MSSA strains. The resistance to most of the antibiotics was significantly higher in MRSA than in MSSA strains. The MLST profiles showed that these strains mainly belonged to CC5, CC398, CC121 and CC50 lineage, especially within ST97 and ST398, while some novel sequence types (ST2154, ST2165 and ST2166) were identified and deposited in the MLST database. This indicates that the resistance of S. aureus is becoming more complicated by changes in multi-drug resistance mechanism and appearance of mecA-negative MRSA isolates, and importantly, MRSA-IV strains in different MLST types are emerging. Copyright © 2015 Elsevier B.V. All rights reserved.
    Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases 01/2015; 31C:9-16. DOI:10.1016/j.meegid.2014.12.039 · 3.26 Impact Factor
  • Staphylococci in Human Disease, Second Edition, 11/2009: pages 170 - 192; , ISBN: 9781444308464
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe coagulase-negative staphylococci (CoNS) isolates collected from ducklings exhibiting tremor in South Korea over the period of 2010 to 2011. Screening of antimicrobial susceptibility and analysis of SCCmec elements of CoNS were also investigated. Staphylococcus cohnii was the most frequent staphylococcus (9 isolates) and S. sciuri (4 isolates), S. lentus (3 isolate), S. simulans (1 isolate) and S. epidermidis (1 isolate) were also detected. Among the 15 antimicrobials tested in this study, resistance against oxacillin (15 isolates, 83.3%) was most frequently observed, but only one isolate (SNUDS-1) possessed mecA. This isolate was shown to possess SCCmec type III; the type 3 ccr complex and the class A mec complex. Based on these results, isolate SNUDS-1 was shown to possess SCCmec type III; the type 3 ccr complex and the class A mec complex. Although the SCCmec type III is not predominant in human, MR-CoNS (Methicillin resistance Coagulase-negative staphylococci) in food animals should be monitored to prevent the dissemination of antimicrobial resistance genes and resistant pathogens to the community.
    Acta Veterinaria Scandinavica 12/2013; 55(1):88. DOI:10.1186/1751-0147-55-88 · 1.00 Impact Factor