Chimeric proteins can exceed the sum of their parts: implications for evolution and protein design.

Department of OBGYN, Robert Wood Johnson (Rutgers) Medical School, Piscataway, NJ 08854, USA.
Nature Biotechnology (Impact Factor: 39.08). 06/1997; 15(5):439-43. DOI: 10.1038/nbt0597-439
Source: PubMed

ABSTRACT Chimeric analogs derived from pairs of homologous proteins routinely exhibit activities found in one or both parents. We describe chimeras of two glycoprotein hormones, human chorionic gonadotropin (hCG) and human follitropin (hFSH), that exhibit activity unique to a third family member, human thyrotropin (hTSH). The results show that biological activity can be separated from hormone-specific amino acid residues. This is consistent with a model for the evolution of homologous ligand-receptor pairs involving gene duplication and the creation of inhibitory determinants that restrict binding. Disruption of these determinants can unmask activities characteristic of other members of a protein family. Combining portions of two ligands to create analogs with properties of a third family member can facilitate identifying key determinants of protein-protein interaction and may be a useful strategy for creating novel therapeutics. In the case of the glycoprotein hormones, this showed that two different hormone regions (i.e., the seat-belt and the intersubunit groove) appear to limit inappropriate contacts with receptors for other members of this family. These observations also have important caveats for chimera-based protein design because an unexpected gain of function may limit the therapeutic usefulness of some chimeras.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Teleosts lack a hypophyseal portal system and hence neurohormones are carried by nerve fibers from the preoptic region to the pituitary. The various cell types in the teleost pituitary are organized in discrete domains. Fish possess two gonadotropins (GtH) similar to FSH and LH in other vertebrates; they are heterodimeric hormones that consist of a common alpha subunit non-covalently associated with a hormone-specific beta subunit. In recent years the availability of molecular cloning techniques allowed the isolation of the genes coding for the GtH subunits in 56 fish species representing at least 14 teleost orders. Advanced molecular engineering provides the technology to produce recombinant GtHs from isolated cDNAs. Various expression systems have been used for the production of recombinant proteins. Recombinant fish GtHs were produced for carp, seabream, channel and African catfish, goldfish, eel, tilapia, zebrafish, Manchurian trout and Orange-spotted grouper. The hypothalamus in fishes exerts its regulation on the release of the GtHs via several neurohormones such as GnRH, dopamine, GABA, PACAP, IGF-I, norepinephrine, NPY, kisspeptin, leptin and ghrelin. In addition, gonadal steroids and peptides exert their effects on the gonadotropins either directly or via the hypothalamus. All these are discussed in detail in this review. In mammals, the biological activities of FSH and LH are directed to different gonadal target cells through the cell-specific expression of the FSH receptor (FSHR) and LH receptor (LHR), respectively, and the interaction between each gonadotropin-receptor couple is highly selective. In contrast, the bioactivity of fish gonadotropins seems to be less specific as a result of promiscuous hormone-receptor interactions, while FSHR expression in Leydig cells explains the strong steroidogenic activity of FSH in certain fish species.
    General and Comparative Endocrinology 09/2009; 165(3):412-37. DOI:10.1016/j.ygcen.2009.07.019 · 2.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The slow Wallerian degeneration (Wld(S)) protein protects injured axons from degeneration. This unusual chimeric protein fuses a 70-amino acid N-terminal sequence from the Ube4b multiubiquitination factor with the nicotinamide adenine dinucleotide-synthesizing enzyme nicotinamide mononucleotide adenylyl transferase 1. The requirement for these components and the mechanism of Wld(S)-mediated neuroprotection remain highly controversial. The Ube4b domain is necessary for the protective phenotype in mice, but precisely which sequence is essential and why are unclear. Binding to the AAA adenosine triphosphatase valosin-containing protein (VCP)/p97 is the only known biochemical property of the Ube4b domain. Using an in vivo approach, we show that removing the VCP-binding sequence abolishes axon protection. Replacing the Wld(S) VCP-binding domain with an alternative ataxin-3-derived VCP-binding sequence restores its protective function. Enzyme-dead Wld(S) is unable to delay Wallerian degeneration in mice. Thus, neither domain is effective without the function of the other. Wld(S) requires both of its components to protect axons from degeneration.
    The Journal of Cell Biology 03/2009; 184(4):491-500. DOI:10.1083/jcb.200807175 · 9.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Slow Wallerian degeneration (Wld(S)) mutant mice express a chimeric nuclear protein that protects sick or injured axons from degeneration. The C-terminal region, derived from NAD(+) synthesizing enzyme Nmnat1, is reported to confer neuroprotection in vitro. However, an additional role for the N-terminal 70 amino acids (N70), derived from multiubiquitination factor Ube4b, has not been excluded. In wild-type Ube4b, N70 is part of a sequence essential for ubiquitination activity but its role is not understood. We report direct binding of N70 to valosin-containing protein (VCP; p97/Cdc48), a protein with diverse cellular roles including a pivotal role in the ubiquitin proteasome system. Interaction with Wld(S) targets VCP to discrete intranuclear foci where ubiquitin epitopes can also accumulate. Wld(S) lacking its N-terminal 16 amino acids (N16) neither binds nor redistributes VCP, but continues to accumulate in intranuclear foci, targeting its intrinsic NAD(+) synthesis activity to these same foci. Wild-type Ube4b also requires N16 to bind VCP, despite a more C-terminal binding site in invertebrate orthologues. We conclude that N-terminal sequences of Wld(S) protein influence the intranuclear location of both ubiquitin proteasome and NAD(+) synthesis machinery and that an evolutionary recent sequence mediates binding of mammalian Ube4b to VCP.
    Molecular Biology of the Cell 04/2006; 17(3):1075-84. DOI:10.1091/mbc.E05-04-0375 · 4.55 Impact Factor