Wild-type and mutant HIV type 1 nucleocapsid proteins increase the proportion of long cDNA transcripts by viral reverse transcriptase.

NCI-Frederick Cancer Research and Development Center, SAIC Frederick, Maryland 21702, USA.
AIDS Research and Human Retroviruses (Impact Factor: 2.71). 05/1997; 13(7):533-43. DOI: 10.1089/aid.1997.13.533
Source: PubMed

ABSTRACT HIV-1 nucleocapsid, p7, contains two retroviral zinc fingers, which are both necessary for efficient packaging of genomic RNA and infectivity. The nucleocapsid protein is bound tightly to genomic RNA in the mature virion. In this study, the effect of p7 on polymerization of nascent cDNA by viral reverse transcriptase (RT) was examined. An 874-base RNA of HIV-1 was synthesized and used as a template in RT assays with varying concentrations of intact p7, mutants of p7 that have transposed or repeated zinc fingers, and several different peptides that represent various structural regions of p7. Results indicate that at greater than or equal to 50% saturation of p7-binding sites, with p7, there is up to a 90% reduction in total cDNA synthesis, as measured by nucleotide incorporation. However, the cDNA products that are made are almost exclusively full length. Three zinc finger mutants exhibited effects similar to those of wild-type p7. N-terminal and C-terminal halves of p7 inhibited total nucleotide incorporation, but also inhibited synthesis of long cDNA products by RT. In the absence of p7 an array of short transcripts (< 200 bases) was produced by RT. These studies show that full-length p7 is necessary to increase the proportion of long cDNA transcripts produced by RT. The relative position of the two zinc fingers is not critical for this effect.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: a b s t r a c t Refractive indices and birefringences for some representative uni-axial crystals such as II-SiP 2 and II-GeP 2 have been determined over a wide range of wavelengths by the use of first-principles electronic structure calculations. First, the calculated refractive indices are fitted usually by a generalized Sellmeier equation which consists of several oscillation terms involve in its parameters more direct information about material such as electronic transitions or resonance wavelengths. Then, in contrast to all other semiconductors under discussion our spectra show a negative birefringence for CdSiP 2 in agreement with the experimental data, and they exhibit a considerable dispersion near the band gap.
    Solid State Communications 07/2011; 151:1568-1573. · 1.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human immunodeficiency virus type 1 (HIV-1) and other retroviruses replicate through reverse transcription, a process in which the single stranded RNA of the viral genome is converted to a double stranded DNA. The virally encoded reverse transcriptase (RT) mediates reverse transcription through DNA polymerase and RNase H activities. Conversion of the plus strand RNA to plus/minus strand RNA/DNA hybrid involves a transfer of the growing DNA strand from one site on the genomic RNA to another. This is called minus strong-stop DNA transfer. Later synthesis of the second or plus DNA strand involves a second strand transfer, involving a similar mechanism as the minus strand transfer. A basic feature of the strand transfer mechanism is the use of the RT RNase H to remove segments of the RNA template strand from the growing DNA strand, freeing a single stranded region to anneal to the second site. Viral nucleocapsid protein (NC) functions to promote transfer by facilitating this strand exchange process. Two copies of the RNA genomes, sometimes non-identical, are co-packaged in the genomes of retroviruses. The properties of the reverse transcriptase allow a transfer of the growing DNA strand between these genomes to occur occasionally at any point during reverse transcription, producing recombinant viral progeny. Recombination promotes structural diversity of the virus that helps it to survive host immunity and drug therapy. Recombination strand transfer can be forced by a break in the template, or can occur at sites where folding structure of the template pauses the RT, allowing a concentration of RNase H cleavages that promote transfers. Transfer can be a simple one-step process, or can proceed by a complex multi-step invasion mechanism. In this latter process, the second RNA template interacts with the growing DNA strand well behind the DNA 3'-terminus. The newly formed RNA-DNA hybrid expands by branch migration and eventually catches the elongating DNA primer 3'-terminus to complete the transfer. Transfers are also promoted by interactions between the two RNA templates, which accelerate transfer by a proximity effect. Other details of the role of strand transfers in reverse transcription and the biochemical features of the transfer reaction are discussed.
    Virus Research 07/2008; 134(1-2):19-38. · 2.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The carboxy-terminal domain (CTD) of the core protein of hepatitis B virus is not necessary for capsid assembly. However, the CTD does contribute to encapsidation of pregenomic RNA (pgRNA). The contribution of the CTD to DNA synthesis is less clear. This is the case because some mutations within the CTD increase the proportion of spliced RNA to pgRNA that are encapsidated and reverse transcribed. The CTD contains four clusters of consecutive arginine residues. The contributions of the individual arginine clusters to genome replication are unknown. We analyzed core protein variants in which the individual arginine clusters were substituted with either alanine or lysine residues. We developed assays to analyze these variants at specific steps throughout genome replication. We used a replication template that was not spliced in order to study the replication of only pgRNA. We found that alanine substitutions caused defects at both early and late steps in genome replication. Lysine substitutions also caused defects, but primarily during later steps. These findings demonstrate that the CTD contributes to DNA synthesis pleiotropically and that preserving the charge within the CTD is not sufficient to preserve function.
    Journal of Virology 11/2010; 85(3):1298-309. · 5.08 Impact Factor