Wild-type and mutant HIV type 1 nucleocapsid proteins increase the proportion of long cDNA transcripts by viral reverse transcriptase

Johns Hopkins University, Baltimore, Maryland, United States
AIDS Research and Human Retroviruses (Impact Factor: 2.46). 05/1997; 13(7):533-43. DOI: 10.1089/aid.1997.13.533
Source: PubMed

ABSTRACT HIV-1 nucleocapsid, p7, contains two retroviral zinc fingers, which are both necessary for efficient packaging of genomic RNA and infectivity. The nucleocapsid protein is bound tightly to genomic RNA in the mature virion. In this study, the effect of p7 on polymerization of nascent cDNA by viral reverse transcriptase (RT) was examined. An 874-base RNA of HIV-1 was synthesized and used as a template in RT assays with varying concentrations of intact p7, mutants of p7 that have transposed or repeated zinc fingers, and several different peptides that represent various structural regions of p7. Results indicate that at greater than or equal to 50% saturation of p7-binding sites, with p7, there is up to a 90% reduction in total cDNA synthesis, as measured by nucleotide incorporation. However, the cDNA products that are made are almost exclusively full length. Three zinc finger mutants exhibited effects similar to those of wild-type p7. N-terminal and C-terminal halves of p7 inhibited total nucleotide incorporation, but also inhibited synthesis of long cDNA products by RT. In the absence of p7 an array of short transcripts (< 200 bases) was produced by RT. These studies show that full-length p7 is necessary to increase the proportion of long cDNA transcripts produced by RT. The relative position of the two zinc fingers is not critical for this effect.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The HIV-1 Gag polyprotein precursor composed of the matrix (MA), capsid (CA), nucleocapsid (NC) and p6 domains orchestrates virus assembly via interactions between MA and the cell plasma membrane (PM) on one hand, and NC and the genomic RNA on the other hand. As the Gag precursor can adopt a bent conformation, a potential interaction of the NC domain with the PM cannot be excluded during Gag assembly at the PM. To investigate the possible interaction of NC with lipid membranes in the absence of any interference from the other domains of Gag, we quantitatively characterized by fluorescence spectroscopy the binding of the mature NC protein to large unilamellar vesicles (LUVs) used as membrane models. We found that NC, either in its free form or bound to an oligonucleotide, was binding with high affinity (∼ 10(7) M(-1)) to negatively charged LUVs. The number of NC binding sites, but not the binding constant, was observed to decrease with the percentage of negatively charged lipids in the LUV composition, suggesting that NC and NC/oligonucleotide complexes were able to recruit negatively charged lipids to ensure optimal binding. However, in contrast to MA, NC did not exhibit a preference for phosphatidylinositol- (4, 5)-bisphosphate. These results lead us to propose a modified Gag assembly model where the NC domain contributes to the initial binding of the bent form of Gag to the PM. The NC protein is a highly conserved nucleic acid binding protein that plays numerous key roles in HIV-1 replication. While accumulating evidence shows that NC either as a mature protein or a domain of the Gag precursor also interacts with host proteins, only few data are available on the possible interaction of NC with lipid membranes. Interestingly, during HIV-1 assembly, the Gag precursor is thought to adopt a bent conformation where the NC domain may interact with the plasma membrane. In this context, we quantitatively characterized the binding of NC, as a free protein or as a complex with nucleic acids, to lipid membranes and evidenced that the latter constitute a binding platform for NC. Taken together, our data suggest that the NC domain may play a role in the initial binding events of Gag to the plasma membrane during HIV-1 assembly. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
    Journal of Virology 11/2014; DOI:10.1128/JVI.02931-14 · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human immunodeficiency virus genome dimerization is initiated through an RNA-RNA kissing interaction formed via the dimerization initiation site (DIS) loop sequence, which has been proposed to be converted to a more thermodynamically stable linkage by the viral p7 form of the nucleocapsid protein (NC). Here, we systematically probed the role of specific amino acids of NCp7 in its chaperone activity in the DIS conversion using 2-aminopurine (2-AP) fluorescence and nuclear magnetic resonance spectroscopy. Through comparative analysis of NCp7 mutants, the presence of positively charged residues in the N-terminus was found to be essential for both helix destabilization and strand transfer functions. It was also observed that the presence and type of the Zn finger is important for NCp7 chaperone activity, but not the order of the Zn fingers. Swapping single aromatic residues between Zn fingers had a significant effect on NCp7 activity; however, these mutants did not exhibit the same activity as mutants in which the order of the Zn fingers was changed, indicating a functional role for other flanking residues. RNA chaperone activity is further correlated with NCp7 structure and interaction with RNA through comparative analysis of nuclear magnetic resonance spectra of NCp7 variants, and complexes of these proteins with the DIS dimer.
    Nucleic Acids Research 12/2012; 41(4). DOI:10.1093/nar/gks1350 · 8.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During reverse transcription, the HIV-1 RNA is converted by the reverse transcriptase (RT) into proviral DNA. RT is assisted by the HIV-1 nucleocapsid (NCp7) protein that notably increases the ability of RT to synthesize DNA through pause sites. Using single molecule FRET, we monitored the NCp7 effect on the binding of RT to nucleic acid sequences corresponding to two different pause sites. NCp7 was found to modify the distribution of RT orientations on the oligonucleotides and decrease the residence time of RT on one of the pause sites. These results give direct insight into the NCp7 molecular mechanism in reverse transcription.
    Single Molecule Spectroscopy and Superresolution Imaging VI, edited by Jörg Enderlein, Ingo Gregor, Zygmunt Karol Gryczynski, Rainer Erdmann, Felix Koberling, Proc. of SPIE, USA; 02/2013