Article

Wild-type and mutant HIV type 1 nucleocapsid proteins increase the proportion of long cDNA transcripts by viral reverse transcriptase.

NCI-Frederick Cancer Research and Development Center, SAIC Frederick, Maryland 21702, USA.
AIDS Research and Human Retroviruses (Impact Factor: 2.71). 05/1997; 13(7):533-43. DOI: 10.1089/aid.1997.13.533
Source: PubMed

ABSTRACT HIV-1 nucleocapsid, p7, contains two retroviral zinc fingers, which are both necessary for efficient packaging of genomic RNA and infectivity. The nucleocapsid protein is bound tightly to genomic RNA in the mature virion. In this study, the effect of p7 on polymerization of nascent cDNA by viral reverse transcriptase (RT) was examined. An 874-base RNA of HIV-1 was synthesized and used as a template in RT assays with varying concentrations of intact p7, mutants of p7 that have transposed or repeated zinc fingers, and several different peptides that represent various structural regions of p7. Results indicate that at greater than or equal to 50% saturation of p7-binding sites, with p7, there is up to a 90% reduction in total cDNA synthesis, as measured by nucleotide incorporation. However, the cDNA products that are made are almost exclusively full length. Three zinc finger mutants exhibited effects similar to those of wild-type p7. N-terminal and C-terminal halves of p7 inhibited total nucleotide incorporation, but also inhibited synthesis of long cDNA products by RT. In the absence of p7 an array of short transcripts (< 200 bases) was produced by RT. These studies show that full-length p7 is necessary to increase the proportion of long cDNA transcripts produced by RT. The relative position of the two zinc fingers is not critical for this effect.

0 Bookmarks
 · 
164 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The current study indicates a new role for HIV nucleocapsid protein (NC) in modulating the specificity of plus strand priming. RNase H cleavage by reverse transcriptase (RT) during minus strand synthesis gives rise to RNA fragments that could potentially be used as primers for synthesis of the plus strand, leading to the initiation of priming from multiple points as has been observed for other retroviruses. For HIV, the central and 3' polypurine tracts (PPTs) are the major sites of plus strand initiation. Using reconstituted in vitro assays, results showed that NC greatly reduced the efficiency of extension of non-PPT RNA primers, but not PPT. Experiments mimicking HIV replication showed that RT generated and used both PPT and non-PPT RNAs to initiate "plus strand" synthesis, but non-PPT usage was strongly inhibited by NC. The results support a role for NC in specifying primer usage during plus strand synthesis.
    Virology 09/2008; 378(2):385-96. · 3.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human immunodeficiency virus genome dimerization is initiated through an RNA-RNA kissing interaction formed via the dimerization initiation site (DIS) loop sequence, which has been proposed to be converted to a more thermodynamically stable linkage by the viral p7 form of the nucleocapsid protein (NC). Here, we systematically probed the role of specific amino acids of NCp7 in its chaperone activity in the DIS conversion using 2-aminopurine (2-AP) fluorescence and nuclear magnetic resonance spectroscopy. Through comparative analysis of NCp7 mutants, the presence of positively charged residues in the N-terminus was found to be essential for both helix destabilization and strand transfer functions. It was also observed that the presence and type of the Zn finger is important for NCp7 chaperone activity, but not the order of the Zn fingers. Swapping single aromatic residues between Zn fingers had a significant effect on NCp7 activity; however, these mutants did not exhibit the same activity as mutants in which the order of the Zn fingers was changed, indicating a functional role for other flanking residues. RNA chaperone activity is further correlated with NCp7 structure and interaction with RNA through comparative analysis of nuclear magnetic resonance spectra of NCp7 variants, and complexes of these proteins with the DIS dimer.
    Nucleic Acids Research 12/2012; · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: a b s t r a c t Refractive indices and birefringences for some representative uni-axial crystals such as II-SiP 2 and II-GeP 2 have been determined over a wide range of wavelengths by the use of first-principles electronic structure calculations. First, the calculated refractive indices are fitted usually by a generalized Sellmeier equation which consists of several oscillation terms involve in its parameters more direct information about material such as electronic transitions or resonance wavelengths. Then, in contrast to all other semiconductors under discussion our spectra show a negative birefringence for CdSiP 2 in agreement with the experimental data, and they exhibit a considerable dispersion near the band gap.
    Solid State Communications 07/2011; 151:1568-1573. · 1.53 Impact Factor