Article

The linker region of the ABC-transporter Ste6 mediates ubiquitination and fast turnover of the protein.

Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, Germany.
The EMBO Journal (Impact Factor: 10.75). 06/1997; 16(9):2251-61. DOI: 10.1093/emboj/16.9.2251
Source: PubMed

ABSTRACT Upon block of endocytosis, the a-factor transporter Ste6 accumulates in a ubiquitinated form at the plasma membrane. Here we show that the linker region, which connects the two homologous halves of Ste6, contains a signal which mediates ubiquitination and fast turnover of Ste6. This signal was also functional in the context of another plasma membrane protein. Deletion of an acidic stretch in the linker region ('A-box') strongly stabilized Ste6. The A-box contains a sequence motif ('DAKTI') which resembles the putative endocytosis signal of the alpha-factor receptor Ste2 ('DAKSS'). Deletion of the DAKTI sequence also stabilized Ste6 but, however, not as strongly as the A-box deletion. There was a correlation between the half-life of the mutants and the degree of ubiquitination: while ubiquitination of the deltaDAKTI mutant was reduced compared with wild-type Ste6, no ubiquitination could be detected for the more stable deltaA-box variant. Loss of ubiquitination seemed to affect Ste6 trafficking. In contrast to wild-type Ste6, which was associated mainly with internal membranes, the ubiquitination-deficient mutants accumulated at the plasma membrane, as demonstrated by immunofluorescence and cell fractionation experiments. These findings suggest that ubiquitination is required for efficient endocytosis of Ste6 from the plasma membrane.

Download full-text

Full-text

Available from: Ralf Kölling, Jul 04, 2015
0 Followers
 · 
79 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Specific binding of nerve growth factor (NGF) to p75 neurotrophin receptor (p75(NTR)) leads to p75(NTR) polyubiquitination and its subsequent interaction with TRAF6 resulting in neuronal cell survival. However, when the binding of NGF to p75(NTR) was blocked with p75 antiserum, p75(NTR) polyubiquitination and neuronal cell survival were impaired. Results showed that tyrosine phosphorylation of p75(NTR) increased the polyubiquitination of p75(NTR) and contributed to the observed apparent neuroprotective effects. Similar to p75(NTR) polyubiquitination, interaction of TRAF6 with p75(NTR) was NGF/tyrosine phosphorylation dependent suggesting that TRAF6 might function as an E3 ubiquitin ligase. In sum, the results show that specific binding of NGF to p75(NTR) mediates neuronal cell survival.
    Biochemical and Biophysical Research Communications 04/2012; 421(2):286-90. DOI:10.1016/j.bbrc.2012.04.001
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Myosin II is important for normal cytokinesis and cell wall maintenance in yeast cells. Myosin II-deficient (myo1) strains of the budding yeast Saccharomyces cerevisiae are hypersensitive to nikkomycin Z (NZ), a competitive inhibitor of chitin synthase III (Chs3p), a phenotype that is consistent with compromised cell wall integrity in this mutant. To explain this observation, we hypothesized that the absence of myosin type II will alter the normal levels of proteins that regulate cell wall integrity and that this deficiency can be overcome by the overexpression of their corresponding genes. We further hypothesized that such genes would restore normal (wild-type) NZ resistance. A haploid myo1 strain was transformed with a yeast pRS316-GAL1-cDNA expression library and the cells were positively selected with an inhibitory dose of NZ. We found that high expression of the ubiquitin-conjugating protein cDNA, UBC4, restores NZ resistance to myo1 cells. Downregulation of the cell wall stress pathway and changes in cell wall properties in these cells suggested that changes in cell wall architecture were induced by overexpression of UBC4. UBC4-dependent resistance to NZ in myo1 cells was not prevented by the proteasome inhibitor clasto-lactacystin-beta-lactone and required the expression of the vacuolar protein sorting gene VPS4, suggesting that rescue of cell wall integrity involves sorting of ubiquitinated proteins to the PVC/LE-vacuole pathway. These results point to Ubc4p as an important enzyme in the process of cell wall remodelling in myo1 cells.
    Yeast 04/2007; 24(4):343-55. DOI:10.1002/yea.1481
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nerve growth factor (NGF) binding to p75(NTR) influences TrkA signaling, yet the molecular mechanism is unknown. We observe that NGF stimulates TrkA polyubiquitination, which was attenuated in p75(-/-) mouse brain. TrkA is a substrate of tumor necrosis factor receptor-associated factor 6 (TRAF6), and expression of K63R mutant ubiquitin or an absence of TRAF6 abrogated TrkA polyubiquitination and internalization. NGF stimulated formation of a TrkA/p75(NTR) complex through the p62 scaffold, recruiting the E3/TRAF6 and E2/UbcH7. Peptide targeted to the TRAF6 binding site present in p62 blocked interaction with TRAF6 and inhibited ubiquitination of TrkA, signaling, internalization, and NGF-dependent neurite outgrowth. Mutation of K485 to R blocked TRAF6 and NGF-dependent polyubiquitination of TrkA, resulting in retention of the receptor on the membrane and an absence in activation of specific signaling pathways. These findings reveal that polyubiquitination serves as a common platform for the control of receptor internalization and signaling.
    Molecular Cell 11/2005; 20(2):301-12. DOI:10.1016/j.molcel.2005.09.014