Identification of genes with specific expression in pancreatic cancer by cDNA representational difference analysis.

Department of Internal Medicine I, University of Ulm, Germany.
Genes Chromosomes and Cancer (Impact Factor: 3.84). 07/1997; 19(2):97-103. DOI: 10.1002/(SICI)1098-2264(199706)19:23.0.CO;2-V
Source: PubMed

ABSTRACT cDNA representational difference analysis (cDNA-RDA) is a polymerase-chain-reaction-coupled subtractive and kinetic enrichment procedure for the isolation of differentially expressed genes. In this study, the technique was used to isolate novel genes specifically expressed in pancreatic cancer. cDNA-RDA was done on cDNA reverse transcribed from a poly(A)+ mRNA pool made from 10 cancer tissues (tester) by using as a driver a cDNA from a poly(A)+ mRNA pool made from a combination of 10 tissues of chronic pancreatitis and 10 healthy pancreatic tissues. The use of chronic pancreatitis in addition to healthy pancreas mRNA in the driver preparation eliminated the influence of stromal tissue components present as contamination in the cancer-specific preparations. Such cDNA-RDA led to the isolation of 16 distinct, cancer-specific gene fragments. These were confirmed to be overexpressed in pancreatic cancer tissues by Northern blot analysis. Sequence analysis revealed homologies to five genes previously implicated in the carcinogenesis of the pancreas or other tissues. Eleven fragments had no significant homology to any known gene and thus represent novel candidate disease genes. The experiments demonstrate that cDNA-RDA is a reproducible and highly efficient method for the identification of novel genes with cancer-specific expression.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The epithelial-mesenchymal transition (EMT) is one mechanism by which cells with mesenchymal features can be generated and is a fundamental event in morphogenesis. Recently, invasion and metastasis of cancer cells from the primary tumor are now thought to be initiated by the developmental process termed the EMT, whereby epithelial cells lose cell polarity and cell-cell interactions, and gain mesenchymal phenotypes with increased migratory and invasive properties. The EMT is believed to be an important step in metastasis and is implicated in cancer progression, although the influence of the EMT in clinical specimens has been debated. This review presents the recent results of two cell surface proteins, the functions and underlying mechanisms of which have recently begun to be demonstrated, as novel regulators of the molecular networks that induce the EMT and cancer progression.
    03/2014; 12(1):12-20. DOI:10.5808/GI.2014.12.1.12
  • [Show abstract] [Hide abstract]
    ABSTRACT: We aimed to characterize the localization and prognostic significance of tumour-associated macrophages (tams) in pancreatic ductal adenocarcinoma (pdac). Tumour specimens from 70 patients with pdac and inflammatory specimens from 13 patients with chronic pancreatitis were collected and analyzed for tam and M2 macrophage counts by immunohistochemistry. Correlations between tam distributions and clinicopathologic features were determined. Immunohistochemical analysis showed that tam and M2 macrophage counts were higher in tissues from pdac than from chronic pancreatitis. The tams and M2 macrophages both infiltrated more into peritumour. Both macrophage types were positively associated with lymph node metastasis (p = 0.041 for tams in peritumour, p = 0.013 for M2 macrophages in introtumour, p = 0.006 for M2 macrophage in peritumour). In addition, abdominal pain was significantly more frequent in pdac patients with a greater tams count. The survival rate was much lower in patients having high infiltration by M2 macrophages than in those having low infiltration. The tam count might be associated with neural invasion in pdac, and M2 macrophages might play an important role in lymph node metastasis. Higher counts of either macrophage type were associated with increased risk of lymph node metastasis, and the M2 macrophage count could potentially be a marker for evaluating prognosis.
  • Tribology and Interface Engineering Series 01/2003; 43:359-366. DOI:10.1016/S0167-8922(03)80063-9


Available from