Article

Testosterone replacement in older hypogonadal men: A 12-month randomized controlled trial

Division of Geriatric Medicine, St. Louis University Health Sciences Center, Missouri 63104, USA.
Journal of Clinical Endocrinology &amp Metabolism (Impact Factor: 6.31). 06/1997; 82(6):1661-7. DOI: 10.1210/jcem.82.6.3988
Source: PubMed

ABSTRACT A decline in testicular function is recognized as a common occurrence in older men. However data are sparse regarding the effects of hypogonadism on age-associated physical and cognitive declines. This study was undertaken to examine the year-long effects of testosterone administration in this patient population. Fifteen hypogonadal men (mean age 68 +/- 6 yr) were randomly assigned to receive a placebo, and 17 hypogonadal men (mean age 65 +/- 7 yr) were randomly assigned to receive testosterone. Hypogonadism was defined as a bioavailable testosterone <60 ng/dL. The men received injections of placebo or 200 mg testosterone cypionate biweekly for 12 months. The main outcomes measured included grip strength, hemoglobin, prostate-specific antigen, leptin, and memory. Testosterone improved bilateral grip strength (P < 0.05 by ANOVA) and increased hemoglobin (P < 0.001 by ANOVA). The men assigned to testosterone had greater decreases in leptin than those assigned to the control group (mean +/- SEM: -2.0 +/- 0.9 ng/dL vs. 0.8 +/- 0.7 ng/dL; P < 0.02). There were no significant changes in prostate-specific antigen or memory. Three subjects receiving placebo and seven subjects receiving testosterone withdrew from the study. Three of those seven withdrew because of an abnormal elevation in hematocrit. Testosterone supplementation improved strength, increased hemoglobin, and lowered leptin levels in older hypogonadal men. Testosterone may have a role in the treatment of frailty in males with hypogonadism; however, older men receiving testosterone must be carefully monitored because of its potential risks.

Download full-text

Full-text

Available from: Fran E Kaiser, Jul 07, 2015
0 Followers
 · 
133 Views
  • Source
    Vitamins & Hormones, 02/2015;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human ageing is accompanied with deterioration in endocrine functions the most notable and well characterized of which being the decrease in the production of sex hormones. Current research literature suggests that low sex hormone concentration may be among the key mechanism for sarcopenia and muscle weakness. Within the European large scale MYOAGE project, the role of sex hormones, estrogens and testosterone, in causing the aging-related loss of muscle mass and function was further investigated. Hormone replacement therapy (HRT) in women is shown to diminish age-associated muscle loss, loss in fast muscle function (power), and accumulation of fat in skeletal muscle. Further HRT raises the protein synthesis rate in skeletal muscle after resistance training, and has an anabolic effect upon connective tissue in both skeletal muscle and tendon, which influences matrix structure and mechanical properties. HRT influences gene expression in e.g. cytoskeletal and cell-matrix proteins, has a stimulating effect upon IGF-I, and a role in IL-6 and adipokine regulation. Despite low circulating steroid-hormone level, postmenopausal women have a high local concentration of steroidogenic enzymes in skeletal muscle.
    Biogerontology 05/2013; DOI:10.1007/s10522-013-9425-8 · 3.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Testosterone therapy is increasingly promoted. No randomized placebo-controlled trial has been implemented to assess the effect of testosterone therapy on cardiovascular events, although very high levels of androgens are thought to promote cardiovascular disease. Methods A systematic review and meta-analysis was conducted of placebo-controlled randomized trials of testosterone therapy among men lasting 12+ weeks reporting cardiovascular-related events. We searched PubMed through the end of 2012 using “(“testosterone” or “androgen”) and trial and (“random*”)” with the selection limited to studies of men in English, supplemented by a bibliographic search of the World Health Organization trial registry. Two reviewers independently searched, selected and assessed study quality with differences resolved by consensus. Two statisticians independently abstracted and analyzed data, using random or fixed effects models, as appropriate, with inverse variance weighting. Results Of 1,882 studies identified 27 trials were eligible including 2,994, mainly older, men who experienced 180 cardiovascular-related events. Testosterone therapy increased the risk of a cardiovascular-related event (odds ratio (OR) 1.54, 95% confidence interval (CI) 1.09 to 2.18). The effect of testosterone therapy varied with source of funding (P-value for interaction 0.03), but not with baseline testosterone level (P-value for interaction 0.70). In trials not funded by the pharmaceutical industry the risk of a cardiovascular-related event on testosterone therapy was greater (OR 2.06, 95% CI 1.34 to 3.17) than in pharmaceutical industry funded trials (OR 0.89, 95% CI 0.50 to 1.60). Conclusions The effects of testosterone on cardiovascular-related events varied with source of funding. Nevertheless, overall and particularly in trials not funded by the pharmaceutical industry, exogenous testosterone increased the risk of cardiovascular-related events, with corresponding implications for the use of testosterone therapy.
    BMC Medicine 04/2013; 11(1):108. DOI:10.1186/1741-7015-11-108 · 7.28 Impact Factor