Interaction between neurons in different laminae of the dorsal horn of the spinal cord. A correlation study in normal and neuropathic rats.

Istituto di Neuroscienze e Bioimmagini, CNR Milano, Segrate (MI), Italy.
European Journal of Neuroscience (Impact Factor: 3.67). 06/1997; 9(5):1017-25. DOI: 10.1111/j.1460-9568.1997.tb01452.x
Source: PubMed

ABSTRACT Simultaneous recordings of 135 pairs of units, located respectively in the superficial (I-IIo) and deep (V) laminae of the dorsal horn of the lumbar spinal cord of anaesthetized and paralysed animals, were performed both from normal (62 pairs) and from peripherally injured (chronically constricted sciatic nerve) rats (73 pairs). In each pair, one neuron was classified as nociceptive, responding only to noxious stimuli, and the other as a wide dynamic range neuron, responding to both non-noxious and noxious stimuli. To understand if some interaction was present between diverse neurons modulated by noxious inputs, we used cross-correlation techniques. The responses of simultaneously recorded pairs of units to suprathreshold (5 mA, 0.5 ms) electrical stimuli were used. A clearly delayed peak in the cross-correlograms of recordings from normal animals was present, indicating connectivity of superficial and deep-layer cells. This feature was not present in the cross-correlograms obtained from nerve-injured animals. Even if a specific pathway cannot be explicitly assigned to support these functional results, an overall connection between superficial and deep layers of the spinal cord is suggested. These connections are supposed to be either inactive or rearranged in the nerve-injured rats, thus suppressing a well timed coordinated connectivity. This anomaly could underlie a reduced degree of functional coherence in the modulation of nociceptive spinal inputs in cases of chronic pain.

  • [Show abstract] [Hide abstract]
    ABSTRACT: In acute rat spinal cord slices, the application of capsaicin (5 μm, 90 s), an agonist of transient receptor potential vanilloid 1 receptors expressed by a subset of nociceptors that project to laminae I-II of the spinal cord dorsal horn, induced an increase in the frequency of spontaneous excitatory and spontaneous inhibitory postsynaptic currents in about half of the neurons in laminae II, III-IV and V. In the presence of tetrodotoxin, which blocks action potential generation and polysynaptic transmission, capsaicin increased the frequency of miniature excitatory postsynaptic currents in only 30% of lamina II neurons and had no effect on the frequency of miniature excitatory postsynaptic currents in laminae III-V or on the frequency of miniature inhibitory postsynaptic currents in laminae II-V. When the communication between lamina V and more superficial laminae was interrupted by performing a mechanical section between laminae IV and V, capsaicin induced an increase in spontaneous excitatory postsynaptic current frequency in laminae II-IV and an increase in spontaneous inhibitory postsynaptic current frequency in lamina II that were similar to those observed in intact slices. However, in laminae III-IV of transected slices, the increase in spontaneous inhibitory postsynaptic current frequency was virtually abolished. Our results indicate that nociceptive information conveyed by transient receptor potential vanilloid 1-expressing nociceptors is transmitted from lamina II to deeper laminae essentially by an excitatory pathway and that deep laminae exert a 'feedback' control over neurons in laminae III-IV by increasing inhibitory synaptic transmission in these laminae. Moreover, we provide evidence that laminae III-IV might play an important role in the processing of nociceptive information in the dorsal horn.
    European Journal of Neuroscience 09/2012; DOI:10.1111/j.1460-9568.2012.08273.x · 3.67 Impact Factor
  • Clinical Endocrinology News 01/2009; 4(12):22-22. DOI:10.1016/S1558-0164(09)70407-9