The type 2 and type 3 iodothyronine deiodinases play important roles in coordinating development in Rana catesbeiana tadpoles.

Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire 03756-0001, USA.
Endocrinology (Impact Factor: 4.72). 08/1997; 138(7):2989-97. DOI: 10.1210/en.138.7.2989
Source: PubMed

ABSTRACT In developing Rana catesbeiana tadpoles, the timing of the thyroid hormone (TH)-dependent metamorphic responses varies markedly among tissues. Yet at any one time these tissues are exposed to the same plasma concentration of TH, suggesting that TH action is regulated in part at the level of the peripheral tissues. A major factor in TH action is the intracellular level of the active TH, T3. This level is dependent not only on the plasma concentration of TH (mostly T4) but also on the intracellular activities of the type 2 5'-deiodinase (D2) and the type 3 5-deiodinase (D3), which are responsible, respectively, for generating and degrading T3. (D1 is not present in this species.) To determine whether differential expression of D2 and D3 among tissues could be a significant factor in the coordination of metamorphic events, the ontogenic profiles of the two enzyme activities and corresponding messenger RNA levels in most tissues of R. catesbeiana tadpoles have been documented. The profiles of D2 expression in tail, hindlimb, forelimb, intestine, skin, and eye differed markedly at both activity and messenger RNA levels, but it was notable that expression was invariably highest in a given tissue at the time of its major metamorphic change. D2 expression was very low in brain and heart and did not vary during development. D2 was not expressed in liver, kidney, or red blood cells. With the exception of red blood cells, D3 expression was detected in all tissues studied. Furthermore, it was evident that in tissues that expressed both deiodinase genes, the two expression profiles were comparable, indicating a potential for tight control of intracellular T3 levels. Direct evidence of the importance of the intracellular conversion of T4 to T3 for TH-dependent metamorphic events was obtained in tadpoles in which endogenous TH synthesis was blocked with methimazole, and the activities of D2 and D3 were inhibited by iopanoic acid. This treatment inhibited metamorphosis. The inhibition could be overcome by the concomitant administration of replacement levels of T3, but not T4. These results strongly support the view that coordinated development in amphibia depends in part on the tissue-specific expression patterns of the D2 and D3 genes, which ensure that the requisite level of intracellular T3 is attained in a given tissue, regardless of the current level of circulating TH, at the appropriate stage of metamorphosis.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Polybrominated diphenyl ethers (PBDEs) and their oxidative metabolites (hydroxylated PBDEs; OH-BDEs) are known endocrine disrupting contaminants that have been shown to disrupt thyroid hormone regulation both in mammals and in fish. The purpose of this study was to determine the precise organ and tissue locations that express genes critical to thyroid hormone regulation in developing zebrafish (Danio rerio), and to determine the effects of an OH-BDE on their expression. While RT-PCR can provide quantitative data on gene expression, it lacks spatial sensitivity to examine localized gene expression; and, isolation of organs from zebrafish embryos is technically difficult, if not impossible. For this reason, the present study used whole mount in situ hybridization to simultaneously localize and quantify gene expression in vivo. While PBDEs and OH-BDEs have been shown to inhibit the activity and expression of deiodionases, a family of enzymes that regulate thyroid hormone concentrations intracellularly, it is unclear whether or not they can affect regional expression of the different isoforms during early development. In this study we investigated deiodinase 1 (Dio1), deiodinase 2 (Dio2), and deiodinase 3 (Dio3) mRNA expression at the following life stages (2, 8, and 1k-cells; 50%-epiboly, 6 and 18-somites, 22, 24, 48, 72 hpf and/or 10 dpf) in zebrafish and found life stage specific expression of these genes that were highly localized. To demonstrate the use of this technique for investigating potential endocrine disrupting effects, zebrafish embryos were exposed to 1, 10 and 100nM 6-OH-BDE-47. Significant increases in mean intensity of Dio1 and Dio3 expression in the periventricular zone of brain and pronephric duct, respectively (quantified by measuring intensity of coloration using ImageJ analysis software) were observed, suggesting localized response at the HPT axis with the possibility of impacting neurodevelopment. Our results demonstrate effects of OH-BDEs on thyroid regulating gene expression and provide more insight into potential sites of injury during early life stages.
    Aquatic toxicology (Amsterdam, Netherlands) 03/2013; 132-133C:190-199. · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thyroid hormones (THs) are crucial for normal vertebrate development and are the one obligate morphogen that drives amphibian metamorphosis. However, contrary to other metamorphosing vertebrates, lampreys exhibit a sharp drop in serum TH early in metamorphosis, and anti-thyroid agents such as potassium perchlorate (KClO(4)) induce metamorphosis. The type 2 deiodinase (D2) enzyme is a key regulator of TH availability during amphibian metamorphosis. We set out to determine how D2 may be involved in the regulation of lamprey metamorphosis and thyroid homeostasis. We cloned a 1.8 Kb P. marinus D2 cDNA that includes the entire protein coding region and a selenocysteine (Sec) codon. Northern blotting indicated that the lamprey D2 mRNA is the longest reported to date (> 9 kb). Using real-time PCR, we showed that intestinal and hepatic D2 mRNA levels were elevated prior to and during the early stages of metamorphosis and then declined dramatically to low levels that were sustained for the remainder of metamorphosis. These data are consistent with previously reported changes in serum TH levels and deiodinase activity. Treatment of larvae with either TH or KClO(4) significantly affected D2 mRNA levels in the intestine and liver. These D2 mRNA levels during metamorphosis and in response to thyroid challenges suggest that D2 may function in the regulation of TH levels during lamprey metamorphosis and the maintenance of TH homeostasis.
    General and Comparative Endocrinology 01/2013; · 2.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thyroid hormones (THs) play an essential role in vertebrate development, acting predominantly via nuclear TH receptors (TRs) which are ligand-dependent transcription factors. Binding of the ligand (predominantly T3) induces a switch from gene activation to gene repression or vice versa. Iodothyronine deiodinases (Ds) and TH transporters are important regulators of intracellular T3 availability and therefore contribute to the control of TR-dependent development.
    Biochimica et biophysica acta. 05/2014;