Article

Interleukin 12 (IL-12) is crucial to the development of protective immunity in mice intravenously infected with mycobacterium tuberculosis.

Department of Microbiology, Colorado State University, Fort Collins, Colorado 80523, USA.
Journal of Experimental Medicine (Impact Factor: 13.91). 08/1997; 186(1):39-45. DOI: 10.1084/jem.186.1.39
Source: PubMed

ABSTRACT Immunity to Mycobacterium tuberculosis infection is associated with the emergence of protective CD4 T cells that secrete cytokines, resulting in activation of macrophages and the recruitment of monocytes to initiate granuloma formation. The cytokine-mediating macrophage activation is interferon-gamma (IFN-gamma), which is largely dependent on interleukin-12 (IL-12) for its induction. To address the role of IL-12 in immunity to tuberculosis, IL-12 p40(-/-) mice were infected with M. tuberculosis and their capacity to control bacterial growth and other characteristics of their immune response were determined. The IL-12 p40(-/-) mice were unable to control bacterial growth and this appeared to be linked to the absence of both innate and acquired sources of IFN-gamma. T cell activation as measured by delayed type hypersensitivity and lymphocyte accumulation at the site of infection were both markedly reduced in the IL-12 p40(-/-) mice. Therefore, IL-12 is essential to the generation of a protective immune response to M. tuberculosis, with its main functions being the induction of the expression of IFN-gamma and the activation of antigen-specific lymphocytes capable of creating a protective granuloma.

0 Bookmarks
 · 
91 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The TB9.8 of Mycobacterium bovis can induce strong antigen-specific T-cell responses in proliferation assays and IFN-γ assays. However, whether and how TB9.8 activates innate immune cells remain unclear. Therefore, recombinant protein TB9.8 (rTB9.8)-induced proinflammatory cytokine profile by RAW264.7 cells was investigated and the related signaling pathway was studied. Stimulation with rTB9.8 triggered RAW264.7 cells to produce IL-6 and IL-12 p40. In addition, rTB9.8 activated the mitogen-activated protein kinase (MAPK) cascade in RAW264.7 cells by inducing the phosphorylation of extracellular signal-regulated kinase (ERK) and p38 kinase (p38) and also promoted nuclear translocation of phosphorylated p38 and ERK1/2. Furthermore, rTB9.8 activated nuclear factor κB (NF-κB) signaling pathway by inducing p65 translocation into the nucleus and the phosphorylation of IκBα in the cytosol. Blocking assays showed that specific inhibitors of ERK1/2, p38, and IκBα can significantly reduce the expression of IL-6 and IL-12 p40, which demonstrated that rTB9.8-mediated cytokine production is dependent on the activation of these kinases. Thus, this study demonstrates that rTB9.8 can activate RAW264.7 and trigger IL-6 and IL-12 p40 production via the ERK, p38, and NF-κB signaling pathways.
    Inflammation 01/2015; · 1.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The main objective of the study was to evaluate whether in vitro QuantiFERON-TB Gold In-Tube (QFT-GIT) assay antigen-specific IL-1β, TNF-α, IL-2, IL-6, IL-8 and IL-12 (p40) production is associated with active TB. In a cohort of 77 pulmonary TB patients (PTB), 67 healthy household contacts (HHC) and 83 healthy control subjects (HCS), the antigen-specific cytokines levels were determined in supernatants generated from QFT-GIT tubes. Antigen-specific IL-1β levels were significantly higher in PTB than HHC and HCS. At a fixed cutoff point (1,108 pg/ml), IL-1β showed positivity of 62.33 % in PTB, 22.38 % in HHC and 22.89 % in HCS. Moreover, antigen-specific IL-1β assay can differentiate PTB and HHC (believed to be latently infected) (p < 0.0001). Like IL-1β, significantly higher levels of antigen-specific TNF-α were associated with PTB and displayed 43.63 % positivity in PTB. The antigen-specific IL-2 levels were associated both with PTB (54.54 %) and HHC (48.14 %). Other cytokines levels did not differ among the groups. Our results suggest that antigen-specific IL-1β can be used as a biomarker for active TB diagnosis as well as for differential diagnosis of PTB and LTBI.
    Medical Microbiology and Immunology 12/2014; · 2.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sarcoidosis is a systemic granulomatous disease predominantly affecting the lungs. It is believed to be caused by exposure to pathogenic antigens in genetically susceptible individuals but the causative antigen has not been identified. The formation of non-caseating granulomas at sites of ongoing inflammation is the key feature of the disease. Other aspects of the pathogenesis are peripheral T-cell anergy and disease progression to fibrosis. Many T-cell-associated cytokines have been implicated in the immunopathogenesis of sarcoidosis, but it is becoming apparent that IL-12 cytokine family members including IL-12, IL-23, IL-27, and IL-35 are also involved. Although the members of this unique cytokine family are heterodimers of similar subunits, their biological functions are very diverse. Whilst IL-23 and IL-12 are pro-inflammatory regulators of Th1 and Th17 responses, IL-27 is bidirectional for inflammation and the most recent family member IL-35 is inhibitory. This review will discuss the current understanding of etiology and immunopathogenesis of sarcoidosis with a specific focus on the bidirectional impact of IL-12 family cytokines on the pathogenesis of sarcoidosis.
    Frontiers in Pharmacology 10/2014; 5:233.

Full-text (2 Sources)

Download
39 Downloads
Available from
May 28, 2014