Article

p53 gene mutations in multiple myeloma.

Centre for Haematological Oncology, General Infirmary at Leeds.
Molecular Pathology 03/1997; 50(1):18-20.
Source: PubMed

ABSTRACT To assess whether p53 gene mutation is important in the pathogenesis and progression of multiple myeloma.
Thirty eight DNA samples (derived predominantly from bone marrow) obtained from 31 patients with multiple myeloma were examined for mutations in p53 exons 5-9 by polymerase chain reaction single strand conformation polymorphism. Twenty three samples were analysed at the time of diagnosis (one patient had plasma cell leukaemia), three in plateau phase, and 12 at relapse (one plasma cell leukaemia and one extramedullary relapse).
One p53 mutation was detected in this group of patients (3.2%). This was seen in the diagnostic bone marrow sample of a 35 year old man with stage IIA disease and occurred in exon 6 as a result of a silent A to G transition at codon 213 (CGA-->CGG), a polymorphism that has been reported in about 3% of breast and lung tumours.
p53 gene mutations are rare events in multiple myeloma and would seem to be of limited value as a prognostic factor.

0 Bookmarks
 · 
85 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hemizygous deletion of 17p (del(17p)) has been identified as a variable associated with poor prognosis in myeloma, although its impact in the context of thalidomide therapy is not well described. The clinical outcome of 85 myeloma patients with del(17p) treated in a clinical trial incorporating both conventional and thalidomide-based induction therapies was examined. The clinical impact of deletion, low expression, and mutation of TP53 was also determined. Patients with del(17p) did not have inferior response rates compared to patients without del(17p), but, despite this, del(17p) was associated with impaired overall survival (OS) (median OS 26.6 vs. 48.5 months, P < 0.001). Within the del(17p) group, thalidomide induction therapy was associated with improved response rates compared to conventional therapy, but there was no impact on OS. Thalidomide maintenance was associated with impaired OS, although our analysis suggests that this effect may have been due to confounding variables. A minimally deleted region on 17p13.1 involving 17 genes was identified, of which only TP53 and SAT2 were underexpressed. TP53 was mutated in <1% in patients without del(17p) and in 27% of patients with del(17p). The higher TP53 mutation rate in samples with del(17p) suggests a role for TP53 in these clinical outcomes. In conclusion, del(17p) defined a patient group associated with short survival in myeloma, and although thalidomide induction therapy was associated with improved response rates, it did not impact OS, suggesting that alternative therapeutic strategies are required for this group.
    Genes Chromosomes and Cancer 10/2011; 50(10):765-74. · 3.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: TP53 is a tumor suppressor gene that functions as transcriptional regulator influencing cellular responses to DNA damage. Here we explored the clinical and transcriptional effects of TP53 expression in multiple myeloma (MM). We found that low expression of TP53, seen in approximately 10% of newly diagnosed patients, is highly correlated with TP53 deletion, an inferior clinical outcome, and represents an independent risk factor. Analysis of the expression of 122 known TP53 target genes in TP53-high vs -low MM cells from 351 newly diagnosed cases, revealed that only a few were highly correlated with TP53 expression. To elucidate TP53 regulatory networks in MM, we overexpressed TP53 in 4 MM cell lines. Gene expression profiling of these cell lines detected 85 significantly differentially expressed genes, with 50 up-regulated and 35 down-regulated. Unsupervised hierarchical clustering of myeloma samples from 351 newly diagnosed and 90 relapsed patients using the 85 putative TP53 target genes revealed 2 major subgroups showing a strong correlation with TP53 expression and survival. These data suggest that loss of TP53 expression in MM confers high risk and probably results in the deregulation of a novel set of MM-specific TP53-target genes. TP53 target gene specificity may be unique to different cell lineages.
    Blood 04/2008; 112(10):4235-46. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple myeloma, a neoplasm of plasma cells, accounts for approximately approximately 15% of lymphatohematopoietic cancers (LHC) and 2% of all cancers in the US. Incidence rates increase with age, particularly after age 40, and are higher in men, particularly African American men. The etiology is unknown with no established lifestyle, occupational or environmental risk factors. Although several factors have been implicated as potentially etiologic, findings are inconsistent. We reviewed epidemiologic studies that evaluated lifestyle, dietary, occupational and environmental factors; immune function, family history and genetic factors; and the hypothesized precursor, monoclonal gammopathies of undetermined significance (MGUS). Because multiple myeloma is an uncommon disease, etiologic assessments can be difficult because of small numbers of cases in occupational cohort studies, and few subjects reporting exposure to specific agents in case-control studies. Elevated risks have been reported consistently among persons with a positive family history of LHC. A few studies have reported a relationship between obesity and multiple myeloma, and this may be a promising area of research. Factors underlying higher incidence rates of multiple myeloma in African Americans are not understood. The progression from MGUS to multiple myeloma has been reported in several studies; however, there are no established risk factors for MGUS. To improve our understanding of the causes of multiple myeloma, future research efforts should seek the causes of MGUS. More research is also needed on the genetic factors of multiple myeloma, given the strong familial clustering of the disease.
    International Journal of Cancer 01/2007; 120 Suppl 12:40-61. · 6.20 Impact Factor

Full-text

View
2 Downloads
Available from