Identification of the multiple endocrine neoplasia type 1 (MEN1) gene. The European Consortium on MEN1

Claude Bernard University Lyon 1, Villeurbanne, Rhône-Alpes, France
Human Molecular Genetics (Impact Factor: 6.39). 08/1997; 6(7):1177-83. DOI: 10.1093/hmg/6.7.1177
Source: PubMed


Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder characterised by tumours of the parathyroids, pancreas and anterior pituitary that represents one of the familial cancer syndromes. The MEN1 locus has been previously localised to chromosome 11q13, and a <300 kb gene-rich region flanked centromerically by PYGM and telomerically by D11S1783 defined by combined meiotic and tumour deletion mapping studies. Two candidate genes, ZFM1 and PPP2R5B, from this region have been previously excluded, and in order to identify additional candidate genes we used a BAC to isolate cDNAs from a bovine parathyroid cDNA library by direct selection. One of the novel genes that we identified, SCG2, proved to be identical to the recently published MEN1 gene, which is likely to be a tumour suppressor gene. The SCG2 transcript was 2.9 kb in all tissues with an additional 4.2 kb transcript also being present in the pancreas and thymus. Mutational analysis of SCG2 in 10 unrelated MEN1 families identified one polymorphism and nine different heterozygous mutations (one missense, four non-sense, one insertional and three deletional frameshifts) that segregated with the disease, hence providing an independent confirmation for the identification of the MEN1 gene.

1 Follower
6 Reads
  • Source
    • "According to Ito et al. the rates of association of MEN1 and pancreatic neuroendocrine tumors differ between Eastern and Western nations, especially for nonfunctioning gastroenteropancreatic neuroendocrine tumors [12]. Both the histotype of MEN1 neuroendocrine tumor and the size correlate with malignancy [13]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: We reviewed the literature about entero-pancreatic neuroendocrine tumors in Multiple Endocrine Neoplasia type 1 syndrome (MEN1) to clarify their demographic features, localization imaging, practice, and appropriate therapeutical strategies, analyzing the current approach to entero-pancreatic neuroendocrine tumors in MEN1. Despite the fact that hyperparathyroidism is usually the first manifestation of MEN1, the penetrance of these tumors is similar. They are characterized by multiplicity of lesions, variable expression of the tumors, and propensity for malignant degeneration. Both the histological type and the size of MEN1 neuroendocrine tumors correlate with malignancy. Monitoring of pancreatic peptides and use of imaging exams allow early diagnosis and prompt surgical treatment, resulting in prevention of metastatic disease and improvement of long-term survival. Surgery is often the treatment of choice for MEN1-neuroendocrine tumors. The rationale for surgical approach is to curtail malignant progression of the disease, and to cure the associated biochemical syndrome, should it be present.
    Cancers 12/2012; 4(2):504-22. DOI:10.3390/cancers4020504
  • Source
    • "Menin, the tumour suppressor product of the MEN1 gene that is mutated in the human tumour predisposition syndrome multiple endocrine neoplasia type 1 (MEN1), is a 610 amino acid protein with no homology to any known proteins [1,2]. Menin localises predominantly to the nucleus, and is associated with a variety of proteins that implicate it in signal transduction pathways, as a transcriptional co-regulator, and in regulation of chromatin [3-5]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: While it is now more than a decade since the first description of the gene mutation underlying the tumour predisposition syndrome multiple endocrine neoplasia type 1 (MEN1), the mechanism by which its protein product menin acts to prevent development of tumours is still poorly understood. We undertook a genetic experiment to assess whether menin synergises with p53. Mice carrying various combinations of Men1 and Trp53 mutations were generated then survival and pathology assessed. While homozygous loss of Trp53 in mice resulted in early onset, aggressive tumours and profoundly reduced lifespan, heterozygous loss of either Trp53 or Men1 caused later onset disease, with a spectrum of tumours characteristic of each tumour suppressor gene. Loss of one copy of Men1 in animals also lacking both alleles of Trp53 did not exacerbate phenotype, based on survival, animal weight or sites of pathology, compared to Trp53 deletion alone. Dual heterozygous deletion of Men1 and Trp53 resulted in a small reduction in lifespan compared to the individual mutations, without new tumour sites. In the adrenal, we observed development of cortical tumours in dual heterozygous animals, as we have previously seen in Men1+/- animals, and there was loss of heterozygosity at the Men1 allele in these tumours. Median number of pathology observations per animal was increased in dual heterozygous animals compared with heterozygous loss of Trp53 alone. Simultaneous heterozygous deletion of Men1 in animals with either heterozygous or homozygous deletion of Trp53 did not result in formation of tumours at any new sites, implying additive rather than synergistic effects of these pathways. Mice that were Men1+/- in addition to Trp53+/- had tumours in endocrine as well as other sites, implying that increase in total tumour burden, at sites typically associated with either Men1 or Trp53 loss, contributed to the slight decrease in survival in Men1+/-: Trp53+/- animals in comparison with their littermates.
    BMC Cancer 06/2012; 12:252. DOI:10.1186/1471-2407-12-252 · 3.36 Impact Factor
  • Source
    • "The MEN1 gene was identified in 1997 and is the only gene known to be associated with this syndrome (7),(8). Genetic testing with direct sequencing of the MEN1 gene is widely available and provides the best method of diagnosis; it can detect MEN1 gene mutations in about 90% of patients with MEN1 within 4–6 weeks. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Primary hyperparathyroidism is a common endocrinological disorder. In rare circumstances, it is associated with familial syndromes, such as multiple endocrine neoplasia type 1. This syndrome is caused by a germline mutation in the multiple endocrine neoplasia type 1 gene encoding the tumor-suppressor protein menin. Usually, primary hyperparathyroidism is the initial clinical expression in carriers of multiple endocrine neoplasia type 1 mutations, occurring in more than 90% of patients and appearing at a young age (20-25 years). Multiple endocrine neoplasia type 1/primary hyperparathyroidism is generally accompanied by multiglandular disease, clinically manifesting with hypercalcemia, although it can remain asymptomatic for a long time and consequently not always be recognized early. Surgery is the recommended treatment. The goal of this short review is to discuss the timing of surgery in patients when primary hyperparathyroidism is associated with multiple endocrine neoplasia type 1.
    Clinics (São Paulo, Brazil) 04/2012; 67 Suppl 1(Suppl 1):141-4. DOI:10.6061/clinics/2012(Sup01)23 · 1.19 Impact Factor
Show more