Grant PA, Duggan L, Côté J, Roberts SM, Brownell JE, Candau R et al.. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev 11: 1640-1650

Department of Biochemistry and Molecular Biology and The Center for Gene Regulation, The Pennsylvania State University, University Park 16802-4500, USA.
Genes & Development (Impact Factor: 10.8). 08/1997; 11(13):1640-50. DOI: 10.1101/gad.11.13.1640
Source: PubMed


The transcriptional adaptor protein Gcn5 has been identified as a nuclear histone acetyltransferase (HAT). Although recombinant yeast Gcn5 efficiently acetylates free histones, it fails to acetylate histones contained in nucleosomes, indicating that additional components are required for acetylation of chromosomal histones. We report here that Gcn5 functions as a catalytic subunit in two high-molecular-mass native HAT complexes, with apparent molecular masses of 0.8 and 1.8 megadalton (MD), respectively, which acetylate nucleosomal histones. Both the 0.8- and 1.8-MD Gcn5-containing complexes cofractionate with Ada2 and are lost in gcn5delta, ada2delta, or ada3delta yeast strains, illustrating that these HAT complexes are bona fide native Ada-transcriptional adaptor complexes. Importantly, the 1.8-MD adaptor/HAT complex also contains Spt gene products that are linked to TATA-binding protein (TBP) function. This complex is lost in spt20/ada5delta and spt7delta strains and Spt3, Spt7, Spt20/Ada5, Ada2, and Gcn5 all copurify with this nucleosomal HAT complex. Therefore, the 1.8-MD adaptor/HAT complex illustrates an interaction between Ada and Spt gene products and confirms the existence of a complex containing the TBP group of Spt proteins as demonstrated by genetic and biochemical studies. We have named this novel transcription regulatory complex SAGA (Spt-Ada-Gcn5-Acetyltransferase). The function of Gcn5 as a histone acetyltransferase within the Ada and SAGA adaptor complexes indicates the importance of histone acetylation during steps in transcription activation mediated by interactions with transcription activators and general transcription factors (i.e., TBP).

Download full-text


Available from: Jerry L Workman,
  • Source
    • "This complex is generally regarded as a coactivator complex (Kuo et al., 1998), but also has a negative role in gene expression (Belotserkovskaya et al., 2000; Ricci et al., 2002). The SAGA complex is involved in histone acetylation (HAT) (Grant et al., 1997), histone deubiquitination (Daniel et al., 2004), mRNA export (Rodríguez-Navarro et al., 2004), transcription elongation (Govind et al., 2007), chromatin recognition (Pray-Grant et al., 2005), and regulation of the basal transcription machinery (Sterner et al., 1999). Unraveling the modular composition of the SAGA complex has enabled interpretation of its multifunctional role (Wu et al., 2004), principally in regulating the transcription of many stress-inducible (Huisinga and Pugh, 2004) and developmentally regulated genes (reviewed in Wang and Dent, 2014). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein complexes involved in epigenetic regulation of transcription have evolved as molecular strategies to face environmental stress in plants. SAGA (Spt-Ada-Gcn5 Acetyltransferase) is a transcriptional co-activator complex that regulates numerous cellular processes through the coordination of multiple post-translational histone modifications, including acetylation, deubiquitination, and chromatin recognition. The diverse functions of the SAGA complex involve distinct modules that are highly conserved between yeast, flies, and mammals. In this review, the composition of the SAGA complex in plants is described and its role in gene expression regulation under stress conditions summarized. Some of these proteins are likely involved in the regulation of the inducible expression of genes under light, cold, drought, salt, and iron stress, although the functions of several of its components remain unknown.
    Frontiers in Plant Science 11/2015; 6:865. DOI:10.3389/fpls.2015.00865 · 3.95 Impact Factor
  • Source
    • "The Gcn5 HAT is found within different complexes in vivo; namely, ADA/HAT-A2, SAGA, SLIK, and ATAC (Steunou et al. 2014). Recombinant yGcn5 enzyme mainly acetylates H3 and, to a lesser extent, H4 in free histones but is unable to target nucleosomes (Kuo et al. 1996; Grant et al. 1997). Its specificity toward free histones is not drastically changed within native complexes, but it is now able to modify chromatin substrates with a specificity corresponding to its in vivo action toward H3 and H2B (Grant et al. 1999; Suka et al. 2001). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Histone modifiers like acetyltransferases, methyltransferases, and demethylases are critical regulators of most DNA-based nuclear processes, de facto controlling cell cycle progression and cell fate. These enzymes perform very precise post-translational modifications on specific histone residues, which in turn are recognized by different effector modules/proteins. We now have a better understanding of how these enzymes exhibit such specificity. As they often reside in multisubunit complexes, they use associated factors to target their substrates within chromatin structure and select specific histone mark-bearing nucleosomes. In this review, we cover the current understanding of how histone modifiers select their histone targets. We also explain how different experimental approaches can lead to conflicting results about the histone specificity and function of these enzymes.
    Genes & development 05/2014; 28(10):1029-1041. DOI:10.1101/gad.236331.113 · 10.80 Impact Factor
  • Source
    • "The regulatory mechanism through histone acetylation or deacetylation seems not to be specific. GCN5 generally binds to the specific target DNA sequence requiring other factors that have DNA-banding domains (26). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the present study was to investigate the effects of Islet-1 on the process of mesenchymal stem cell (MSC) differentiation into cardiomyocyte-like cells and to elucidate the possible mechanisms involved. Lentiviral vectors expressing Islet-1 (Lenti-Islet-1) were constructed and used for C3H10T1/2 cell transfection. Cell morphology was observed. Cardiac-related genes and proteins were detected by qPCR and western blot analysis. Epigallocatechin gallate (EGCG) was used as an inhibitor of acetylated histone H3 (AcH3). AcH3 was detected by chromatin immunoprecipitation. Cells overexpressing Islet-1 tended to change into fibroblast-like cells and were arranged in the same direction. The enhanced expression of GATA binding protein 4 (Gata4), NK2 homeobox 5 (Nkx2.5), myocyte enhancer factor 2C (Mef2c) and cardiac troponin T (cTnT) was observed in the cells overexpressing Islet-1 following transfection with Lenti-Islet-1. However, the expression of hepatocyte-, bone- and neuronal-specific markers was not affected by Islet-1. The AcH3 relative amount increased following transfection with Lenti-Islet-1, which was associated with the enhanced expression of Gata4, Nkx2.5 and Mef2c in these cells. The expression of Gata4, Nkx2.5 and Mef2c in the C3H10T1/2 cells transfected with Lenti-Islet-1 and treated with EGCG was reduced following treatment with EGCG. The data presented in this study indicate that Islet-1 specifically induces the differentiation of C3H10T1/2 cells into cardiomyocyte-like cells, and one of the mechanisms involved is the regulation of histone acetylation.
    International Journal of Molecular Medicine 03/2014; 33(5). DOI:10.3892/ijmm.2014.1687 · 2.09 Impact Factor
Show more