Article

Peroxisome proliferator activated receptor gamma, CCAAT/enhancer-binding protein alpha, and cell cycle status regulate the commitment to adipocyte differentiation.

Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
Journal of Biological Chemistry (Impact Factor: 4.65). 09/1997; 272(34):21473-8. DOI: 10.1074/jbc.272.34.21473
Source: PubMed

ABSTRACT Terminal differentiation of stem cells is characterized by cessation of cell proliferation as well as changes in cell morphology associated with the differentiated state. For adipocyte differentiation, independent lines of evidence show that the transcription factors peroxisome proliferator activated receptor gamma (PPARgamma) and CCAAT/enhancer-binding protein alpha (C/EBPalpha) as well as the tumor suppressor retinoblastoma (Rb) protein are essential. How these proteins promote adipocyte conversion and how they function cooperatively during the differentiation process remain unclear. We have used retinoic acid (RA) inhibition of adipogenesis to investigate these issues. RA blocked adipogenesis of 3T3-L1 cells induced to differentiate by ectopic expression of PPARgamma and C/EBPalpha independently or together. However, under these circumstances RA was only effective at preventing adipogenesis when added prior to confluence, suggesting that factors involved in regulation of the cell cycle might play a role in establishing the commitment state of adipogenesis that is insensitive to RA. During differentiation of wild type 3T3 L1 preadipocytes, we found that Rb protein is hyperphosphorylated early in adipogenesis, corresponding to previously quiescent cells re-entering the cell cycle, and later becomes hypophosphorylated. The data suggest that, together with the coexpression of PPARgamma and C/EBPalpha, permanent exit from the cell cycle establishes the irreversible commitment to adipocyte differentiation.

0 Bookmarks
 · 
41 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The vitamin A metabolite retinoic acid (RA) regulates gene transcription by activating the nuclear receptors RAR and PPARβ/δ and their cognate lipid binding proteins CRABP-II, which delivers RA to RAR, and FABP5, which shuttles the hormone to PPARβ/δ. In preadipocytes, RA signals predominantly through CRABP-II and the RAR isotype RARγ to induce the expression of hallmark markers of preadipocytes Pref-1, Sox9, and KLF2. RA thus maintains the preadipocyte phenotype and inhibits adipogenesis. In mature adipocytes, RA activates both of its receptors to upregulate expression of genes that enhance lipid oxidation, energy dissipation, and insulin responses. Consequently, RA potently protects mice from diet-induced obesity and insulin resistance by two distinct mechanisms: by counteracting adipogenesis, thereby moderating the formation of new fat cells, and by promoting energy expenditure, thereby preventing adipocyte hypertrophy.
    Adipocyte. 07/2013; 2(3):184-7.
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study was performed to investigate the effect of scoparone on the differentiation of 3T3-L1 preadipocytes. Scoparone inhibited triglyceride (TG) accumulation in the mature adipocytes, evidenced by Oil-red O staining and intracellular quantification. Real time-PCR analysis showed that scoparone significantly down-regulated the mRNA expression of key adipogenic transcription factors, PPARγ, C/EBPα, compared with mature adipocytes. Scoparone appeared to reduce mRNA expression of SREBP1c and FAS being related to the late stage of adipogenesis. Furthermore, aP2 and CD36/FAT, as adipocyte-specific genes, were decreased in mature adipocytes by scoparone treatment. Moreover, scoparone inhibited the up-regulated expression of PPARγ target genes by rosiglitazone to near that observed in cells treated with GW9662. The luciferase assay revealed that scoparone negatively regulates the transcriptional activity of PPARγ. Chromatin immunoprecipitation assay also showed that participation of scoparone in the regulation of PPARγ. Collectively, scoparone has a PPARγ antagonic effect and suppresses differentiation through down-regulation of adipogenic genes by PPARγ inhibition in 3T3-L1 preadipocytes.
    Food Chemistry 11/2013; 141(2):723-30. · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transcriptional signaling through the antioxidant response element (ARE), orchestrated by the Nuclear factor E2-related factor 2 (Nrf2), is a major cellular defense mechanism against oxidative or electrophilic stress. Here, we reported that isoniazid (INH), a widely used antitubercular drug, displays a substantial inhibitory property against ARE activities in diverse mouse and human cells. In 3T3-L1 preadipocytes, INH concentration-dependently suppressed the ARE-luciferase reporter activity and mRNA expression of various ARE-dependent antioxidant genes under basal and oxidative stressed conditions. In keeping with our previous findings that Nrf2-ARE plays a critical role in adipogenesis by regulating expression of CCAAT/enhancer-binding protein β (C/EBPβ) and peroxisome proliferator-activated receptor γ (PPARγ), suppression of ARE signaling by INH hampered adipogenic differentiation of 3T3-L1 cells and human adipose-derived stem cells (ADSCs). Following adipogenesis induced by hormonal cocktails, INH-treated 3T3-L1 cells and ADSCs displayed significantly reduced levels of lipid accumulation and attenuated expression of C/EBPα and PPARγ. Time-course studies in 3T3-L1 cells revealed that inhibition of adipogenesis by INH occurred in the early stage of terminal adipogenic differentiation, where reduced expression of C/EBPβ and C/EBPδ was observed. To our knowledge, the present study is the first to demonstrate that INH suppresses ARE signaling and interrupts with the transcriptional network of adipogenesis, leading to impaired adipogenic differentiation. The inhibition of ARE signaling may be a potential underlying mechanism by which INH attenuates cellular antioxidant response contributing to various complications.
    Toxicology and Applied Pharmacology 10/2013; · 3.98 Impact Factor