Article

Characterisation of the gene encoding adenylosuccinate lyase of Plasmodium falciparum.

The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
Molecular and Biochemical Parasitology (Impact Factor: 2.24). 10/1997; 88(1-2):237-41.
Source: PubMed
1 Follower
 · 
69 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adenylosuccinate lyase (ASL) catalyzes two distinct but chemically similar reactions in purine biosynthesis. The first, exclusive to the de novo pathway involves the cleavage of 5-aminoimidazole-4-(N-succinylcarboxamide) ribonucleotide (SAICAR) to 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) and fumarate and the second common to both de novo and the salvage pathways involves the cleavage of succinyl-adenosine monophosphate (SAMP) to AMP and fumarate. A detailed kinetic and catalytic mechanism of the recombinant His-tagged ASL from Plasmodium falciparum (PfASL) is presented here. Initial velocity kinetics, product inhibition studies and transient kinetics indicate a Uni-Bi rapid equilibrium ordered mechanism. Substrate and solvent isotope effect studies implicate the process of C(gamma)-N bond cleavage to be rate limiting. Interestingly, the effect of pH on k(cat) and k(cat)/K(m) highlight ionization of the base only in the enzyme substrate complex and not in the enzyme alone, thereby implicating the pivotal role of the substrate in the activation of the catalytic base. Site-directed mutagenesis implicates a key role for the conserved serine (S298) in catalysis. Despite the absence of a de novo pathway for purine synthesis and most importantly, the absence of other enzymes that can metabolise AICAR in P. falciparum, PfASL catalyzes the SAICAR cleavage reaction with kinetic parameters similar to those of SAMP reaction and binds AICAR with affinity similar to that of AMP. The presence of this catalytic feature allows the use of AICAR or its analogues as inhibitors of PfASL and hence, as novel putative anti-parasitic agents. In support of this, we do see a dose dependent inhibition of parasite growth in the presence of 5-aminoimidazole-4-carboxamide ribonucleoside (AICAriboside) with half-maximal inhibition at 167+/-5 microM.
    Biochimica et Biophysica Acta 04/2009; 1794(4):642-54. DOI:10.1016/j.bbapap.2008.11.021 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phylogenetic studies of the genus Plasmodium have been performed using sequences of the nuclear, mitochondrial and plastid genes. Here we have analyzed the adenylosuccinate lyase (ASL) gene, which encodes an enzyme involved in the salvage of host purines needed by malaria parasites for DNA synthesis. The ASL gene is present in several eukaryotic as well as prokaryotic organisms and does not have repeat regions, which facilitates the accuracy of the alignment. Furthermore, it has been shown that ASL is not subject to positive natural selection. We have sequenced the ASL gene of several different Plasmodium species infecting humans, rodents, monkeys and birds and used the obtained sequences along with the previously known P. falciparum ASL sequence, for structural and phylogenetic analysis of the genus Plasmodium. The genetic divergence of ASL is comparable with that observed in other nuclear genes such as cysteine proteinase, although ASL cannot be considered conserved when compared to aldolase or superoxide dismutase, which exhibit a slower rate of evolution. Nevertheless, a protein like ASL has a rate of evolution that provides enough information for elucidating evolutionary relationships. We modeled 3D structures of the ASL protein based on sequences used in the phylogenetic analysis and obtained a consistent structure for four different species despite the divergence observed. Such models would facilitate alignment in further studies with a greater number of plasmodial species or other Apicomplexa.
    Infection Genetics and Evolution 08/2002; 1(4):297-301. DOI:10.1016/S1567-1348(02)00031-X · 3.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies of Plasmodium falciparum have identified a region of chromosome 2 in which are clustered three genes for glycosylphosphatidylinositol (GPI)-anchored merozoite surface proteins, MSP2, MSP5, and MSP4, arranged in tandem. MSP4and MSP5 both encode proteins 272 residues long that contain hydrophobic signal sequences, GPI attachment signals, and a single epidermal growth factor (EGF)-like domain at their carboxyl termini. Nevertheless, the remainder of their protein coding regions are quite dissimilar. The locations and similar structural features of these genes suggest that they have arisen from a gene duplication event. Here we describe the identification of the syntenic region of the genome in the murine malaria parasite, Plasmodium chabaudi adami DS. Only one open reading frame is present in this region, and it encodes a protein with structural features reminiscent of both MSP4 and MSP5, including a single EGF-like domain. Accordingly, the gene has been designated PcMSP4/5. The homologue of theP. falciparum MSP2 gene could not be found in P. chabaudi; however, the amino terminus of the PcMSP4/5 protein shows similarity to that of MSP2. The PcMSP4/5 gene encodes a protein with an apparent molecular mass of 36 kDa, and this protein is detected in mature stages of the parasite. The protein partitions in the detergent-enriched phase after Triton X-114 fractionation and is localized to the surfaces of trophozoites and developing and free merozoites. The PcMSP4/5 gene is transcribed in both ring and trophozoite stages but appears to be spliced in a stage-specific manner such that the central intron is spliced from the mRNA in the parasitic stage in which the protein is expressed.