Article

Proton magnetic resonance spectroscopic imaging in progressive supranuclear palsy, Parkinson's disease and corticobasal degeneration.

Neuroimaging Branch, NINDS, National Institutes of Health, Bethesda, MD, USA.
Brain (Impact Factor: 10.23). 10/1997; 120 ( Pt 9)(9):1541-52. DOI: 10.1093/brain/120.9.1541
Source: PubMed

ABSTRACT We used proton magnetic resonance spectroscopic imaging (1H-MRSI) to assess the in vivo cortical and subcortical neuronal involvement in progressive supranuclear palsy, Parkinson's disease and corticobasal degeneration. This technique permitted the simultaneous measurement of compounds containing N-acetylaspartate (NA), choline (Cho), creatine-phosphocreatine (Cre) and lactate, from four 15-mm slices divided into 0.84-ml single-volume elements. The study included 12 patients with progressive supranuclear palsy, 10 with Parkinson's disease, nine with corticobasal degeneration and 11 age-matched normal control subjects. Regions of interest were selected from the brainstem, caudate, thalamus, lentiform nucleus, centrum semiovale, and from frontal, parietal, precentral, temporal and occipital cortices. Progressive supranuclear palsy patients, compared with control subjects, had significantly reduced NA/Cre in the brainstem, centrum semiovale, frontal and precentral cortex, and significantly reduced NA/Cho in the lentiform nucleus. Corticobasal degeneration patients, compared with control subjects, had significantly reduced NA/Cre in the centrum semiovale, and significantly reduced NA/Cho in the lentiform nucleus and parietal cortex. There were no significant differences between Parkinson's disease patients and control subjects, or between patients groups in any individual region of interest. In the parietal cortex of corticobasal degeneration patients, NA/Cho was significantly reduced contralateral to the most affected side. There were statistically significant group differences in the regional pattern of NA/Cre and NA/Cho reduction, comparing normal control subjects with all patient groups, Parkinson's disease with corticobasal degeneration, and Parkinson's disease with progressive supranuclear palsy. Although the occurrence of significant groups differences does not imply that it is possible to differentiate between individual patients using 1H-MRSI in progressive supranuclear palsy and corticobasal degeneration, detection of specific cortical and subcortical patterns of neuronal involvement is possible with this technique. We suggest that this regional pattern of neuronal involvement found in progressive supranuclear palsy and corticobasal degeneration may help in the diagnostic evaluation of affected individuals.

Download full-text

Full-text

Available from: Irene Litvan, Jul 06, 2015
0 Followers
 · 
74 Views
  • Source
    Diagnostics and Rehabilitation of Parkinson's Disease, 12/2011; , ISBN: 978-953-307-791-8
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Frontotemporal dementia is commonly associated with parkinsonism in several sporadic (i.e., progressive supranuclear palsy, corticobasal degeneration) and familial neurodegenerative disorders (i.e., frontotemporal dementia associated with parkinsonism and MAPT or progranulin mutations in chromosome 17). The clinical diagnosis of these disorders may be challenging in view of overlapping clinical features, particularly in speech, language, and behavior. The motor and cognitive phenotypes can be viewed within a spectrum of clinical, pathologic, and genetic disorders with no discrete clinicopathologic correlations but rather lying within a dementia-parkinsonism continuum. Neuroimaging and cerebrospinal fluid analysis can be helpful, but the poor specificity of clinical and imaging features has enormously challenged the development of biological markers that could differentiate these disorders premortem. This gap is critical to bridge in order to allow testing of novel biological therapies that may slow the progression of these proteinopathies.
    Journal of Molecular Neuroscience 09/2011; 45(3):343-9. DOI:10.1007/s12031-011-9632-1 · 2.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brain injury, like other central nervous system pathologies, causes changes in the composition of the cerebrospinal fluid (CSF). In this study, changes in the concentration of small molecules of the CSF, which are in the minimal micromolar concentration, were observed and monitored using high-resolution proton (NMR) spectroscopy. Twenty-two patients with isolated traumatic brain injuries (TBI) and 15 patients making up the control group were recruited for the study. CSF samples were collected by lumbar puncture from the lumbar subarachnoid space in the patients just before commencement of therapy and on the first, third, seventh and fourteenth days of therapy at the ICU. Forty-four signals of the NMR spectra and NO concentration of the CSF samples were analyzed. The analysis shows that the amino acid and organic acid concentrations change during the therapy and mostly are higher than in the control group. Significant differences in concentration of the analyzed CSF components between the TBI patients and the control group have been noted. The rate of the lactate to pyruvate conversion increased because the L/P ratio showed no significant differences between the TBI group and the control group, while the concentrations of both components were significantly higher in the TBI patients than in the control group. Citrulline, arginine and nitric oxide concentrations were the focus of the analysis. Citrulline concentration changes overlapped NO changes from 0 until 3rd day of therapy, while for the remaining days of observation the NO concentration stabilized at the control level, whereas citrulline concentration significantly decreased.
    Brain Research 09/2006; 1104(1):183-9. DOI:10.1016/j.brainres.2006.05.057 · 2.83 Impact Factor