Article

Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI.

Department of Cell Biology, University of Geneva Sciences III, Switzerland.
Cell (Impact Factor: 33.12). 10/1997; 90(6):1137-48. DOI: 10.1016/S0092-8674(00)80379-7
Source: PubMed

ABSTRACT Exocytic transport from the endoplasmic reticulum (ER) to the Golgi complex has been visualized in living cells using a chimera of the temperature-sensitive glycoprotein of vesicular stomatitis virus and green fluorescent protein (ts-G-GFP[ct]). Upon shifting to permissive temperature, ts-G-GFP(ct) concentrates into COPII-positive structures close to the ER, which then build up to form an intermediate compartment or transport complex, containing ERGIC-53 and the KDEL receptor, where COPII is replaced by COPI. These structures appear heterogenous and move in a microtubule-dependent manner toward the Golgi complex. Our results suggest a sequential mode of COPII and COPI action and indicate that the transport complexes are ER-to-Golgi transport intermediates from which COPI may be involved in recycling material to the ER.

Download full-text

Full-text

Available from: Suzie J Scales, Apr 27, 2015
0 Followers
 · 
77 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The endoplasmic reticulum (ER) is an interconnected network comprised of ribosome-studded sheets and smooth tubules. The ER plays crucial roles in the biosynthesis and transport of proteins and lipids, and in calcium (Ca(2+) ) regulation in compartmentalized eukaryotic cells including plant cells. To support its well-segregated functions, the shape of the ER undergoes notable changes in response to both developmental cues and outside influences. In this review, we will discuss recent findings on molecular mechanisms underlying the unique morphology and dynamics of the ER, and the importance of the interconnected ER network in cell polarity. In animal and yeast cells, two family proteins, the reticulons and DP1/Yop1, are required for shaping high-curvature ER tubules, while members of the atlastin family of dynamin-like GTPases are involved in the fusion of ER tubules to make an interconnected ER network. In plant cells, recent data also indicate that the reticulons are involved in shaping ER tubules, while RHD3, a plant member of the atlastin GTPases, is required for the generation of an interconnected ER network. We will also summarize the current knowledge on how the ER interacts with other membrane-bound organelles, with a focus on how the ER and Golgi interplay in plant cells.
    Journal of Integrative Plant Biology 10/2012; DOI:10.1111/j.1744-7909.2012.01176.x · 3.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies carried out during the last 2 decades have dramatically increased our knowledge of the pathways and mechanisms of intracellular membrane traffic, most recently due to the developments in light microscopy and in vivo imaging of fluorescent fusion proteins. These studies have also revealed that certain molecules do not behave according to the classical transportation rules first documented in cell biology textbooks in the 1980s and 1990s. Initially, unconventional mechanisms of secretion that do not involve passage of cargo through the stacked Golgi cisternae were thought to confer on cells the ability to discard excess amounts of protein products. With time, however, more physiological mechanisms and roles have been proposed for an increasing number of secretory processes that bypass the Golgi apparatus.
    Cell and Tissue Research 04/2012; 352(1). DOI:10.1007/s00441-012-1409-5 · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ADP-ribosylation factor-like protein 4A (ARL4A) is a developmentally regulated member of the ARF/ARL GTPase family. The primary structure of ARL4A is very similar to that of other ARF/ARL molecules, but its function remains unclear. The trans-Golgi network golgin GCC185 is required for maintenance of Golgi structure and distinct endosome-to-Golgi transport. We show here that GCC185 acts as a new effector for ARL4 to modulate Golgi organization. ARL4A directly interacts with GCC185 in a GTP-dependent manner. Sub-coiled-coil regions of the CC2 domain of GCC185 are required for the interaction between GCC185 and ARL4A. Depletion of ARL4A reproduces the GCC185-depleted phenotype, causing fragmentation of the Golgi compartment and defects in endosome-to-Golgi transport. GCC185 and ARL4A localize to the Golgi independently of each other. Deletion of the ARL4A-interacting region of GCC185 results in inability to maintain Golgi structure. Depletion of ARL4A impairs the interaction between GCC185 and cytoplasmic linker-associated proteins 1 and 2 (CLASP1 and CLASP2, hereafter CLASPs) in vivo, and abolishes the GCC185-mediated Golgi recruitment of these CLASPs, which is crucial for the maintenance of Golgi structure. In summary, we suggest that ARL4A alters the integrity of the Golgi structure by facilitating the interaction of GCC185 with CLASPs.
    Journal of Cell Science 12/2011; 124(Pt 23):4014-26. DOI:10.1242/jcs.086892 · 5.33 Impact Factor