Article

Signaling pathways through which insulin regulates CCAAT/enhancer binding protein alpha (C/EBP alpha) phosphorylation and gene expression in 3T3-L1 adipocytes - Correlation with GLUT4 gene expression

University of Michigan, Ann Arbor, Michigan, United States
Journal of Biological Chemistry (Impact Factor: 4.6). 11/1997; 272(41):25913-9. DOI: 10.1074/jbc.272.41.25913
Source: PubMed

ABSTRACT Treatment of 3T3-L1 adipocytes with insulin (IC50 approximately 200 pM insulin) or insulin-like growth factor-1 (IC50 approximately 200 pM IGF-1) stimulates dephosphorylation of CCAAT/enhancer binding protein alpha (C/EBPalpha), a transcription factor involved in preadipocyte differentiation. As assessed by immunoblot analysis of one- and two-dimensional PAGE, insulin appears to dephosphorylate one site within p30C/EBPalpha and an additional site within p42C/EBPalpha. Consistent with insulin causing dephosphorylation of C/EBPalpha through activation of phosphatidylinositol 3-kinase, addition of phosphatidylinositol 3-kinase inhibitors (e.g. wortmannin) blocks insulin-stimulated dephosphorylation of C/EBPalpha. In the absence of insulin, wortmannin or LY294002 enhance C/EBPalpha phosphorylation. Similarly, blocking the activity of FKBP-rapamycin-associated protein with rapamycin increases phosphorylation of C/EBPalpha in the absence of insulin. Dephosphorylation of C/EBPalpha by insulin is partially blocked by rapamycin, consistent with a model in which activation of FKBP-rapamycin-associated protein by phosphatidylinositol 3-kinase results in dephosphorylation of C/EBPalpha. The dephosphorylation of C/EBPalpha by insulin, in conjunction with the insulin-dependent decline in C/EBPalpha mRNA and protein, has been hypothesized to play a role in repression of GLUT4 transcription by insulin. Consistent with this hypothesis, the decline of GLUT4 mRNA following exposure of adipocytes to insulin correlates with dephosphorylation of C/EBPalpha. However, the repression of C/EBPalpha mRNA and protein levels by insulin is blocked with an inhibitor of the mitogen-activated protein kinase pathway without blocking the repression of GLUT4 mRNA, thus dissociating the regulation of C/EBPalpha and GLUT4 mRNAs by insulin. A decline in C/EBPalpha mRNA and protein may not be required to suppress GLUT4 transcription because insulin also induces expression of the dominant-negative form of C/EBPbeta (liver inhibitory protein), which blocks transactivation by C/EBP transcription factors.

0 Followers
 · 
125 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Certain flavonoids have been shown to have specific effects on biochemical and metabolic functions of adipocytes. In this study, we investigated the effects of combinations of resveratrol and quercetin on adipogenesis and apoptosis in 3T3-L1 cells. In maturing preadipocytes resveratrol and quercetin at 25 microM individually suppressed intracellular lipid accumulation by 9.4+/-3.9% (p<0.01) and 15.9+/-2.5%, respectively, (p<0.001). The combination of resveratrol and quercetin at the same dose, however, decreased lipid accumulation by 68.6+/-0.7% (p<0.001). In addition, combinations of resveratrol and quercetin at 25 microM significantly decreased the expression of peroxisome proliferators-activated receptor gamma (PPAR gamma) and CCAAT/enhancer-binding protein (C/EBP)alpha, both of which act as key transcription factors. In mature adipocytes resveratrol and quercetin at 100 microM individually decreased viability by 18.1+/-0.6% (p<0.001) and 15.8+/-1% (p<0.001) and increased apoptosis (100 microM) by 120.5+/-8.3% (p<0.001) and 85.3+/-10% (p<0.001) at 48 h, respectively. Combinations of resveratrol and quercetin further decreased viability (73.5+/-0.9%, p<0.001) and increased apoptosis (310.3+/-9.6%, p<0.001) more than single compounds alone. The combination of resveratrol and quercetin at 100 muM increased release of cytochrome c from mitochondria to cytosol and decreased ERK 1/2 phosphorylation. Taken together, our data indicate that combinations of resveratrol and quercetin can exert potential anti-obesity effects by inhibiting differentiation of preadipocytes and inducing apoptosis of mature adipocytes.
    Life Sciences 05/2008; 82(19-20):1032-9. DOI:10.1016/j.lfs.2008.03.003 · 2.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Liver tumor cells arise from normal hepatocytes that escape negative control of proliferation. The transcription factor C/EBPalpha maintains quiescence of hepatocytes through two pathways: inhibition of cdks and repression of E2F. Nevertheless, liver tumors and cultured hepatoma cell lines proliferate in the presence of C/EBPalpha. In this paper, we present evidence that the activation of the PI3K/Akt pathway in liver tumor cells blocks the growth inhibitory activity of C/EBPalpha through the PP2A-mediated dephosphorylation of C/EBPalpha on Ser 193, leading to a failure of C/EBPalpha to interact with and inhibit cdks and E2F. Mutation of Ser 193 to Ala also abolishes the ability of C/EBPalpha to cause growth arrest because of a lack of interactions with cdk2 and E2F-Rb complexes. These data provide a molecular basis for the development of liver tumors in which the activation of PI3K/Akt pathway neutralizes C/EBPalpha growth inhibitory activity.
    Genes & Development 05/2004; 18(8):912-25. DOI:10.1101/gad.1183304 · 12.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: IGF1 expression regulation attracts numerous interests because of its important role during mammalian growth and development. Domestic pig can be used as a valuable animal model to investigate human development since they share the high similarity in general physiology and metabolism. In this study, we examined the expression pattern of IGF1 and found it associated with liver C/EBP β expression pattern in porcine liver during embryonic and postnatal development. Both IGF1 and C/EBP β expression in liver maintained at low levels before birth and increased after birth. Correspondingly, C/EBP β demonstrated high binding activity to two sites at IGF1 promoter region in liver after birth. Additionally, IGF1 expression can be activated by C/EBP β overexpression in porcine primary hepatocytes. These results indicated that C/EBP β can activate IGF1 expression after birth by binding to IGF1 promoter. Our study may contribute to a better understanding of mammalian development and bring a novel anti-aging pathway in human.
    Molecular and Cellular Biochemistry 12/2014; 401(1-2). DOI:10.1007/s11010-014-2308-8 · 2.39 Impact Factor