Article

Activation of ErbB2 during wallerian degeneration of sciatic nerve.

Department of Biology, College of Arts and Sciences, KyungHee University, Seoul, 130-701 Korea.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 12/1997; 17(21):8293-9.
Source: PubMed

ABSTRACT We used anti-phosphopeptide-immunodetecting antibodies as immunohistochemical reagents to define the location and activity state of p185(erbB2) during Wallerian degeneration. Nerve damage induces a phosphorylation event at Y1248, a site that couples p185(erbB2) to the Ras-Raf-MAP kinase signal transduction pathway. Phosphorylation of p185(erbB2) occurs within Schwann cells and coincides in time and space with Schwann cell mitotic activity, as measured by bromodeoxyuridine uptake. These visual images of receptor autophosphorylation link activation of p185(erbB2) to the Schwann cell proliferation that accompanies nerve regeneration.

Full-text

Available from: Scott L Pomeroy, Jun 13, 2015
0 Followers
 · 
66 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Schwann cell myelination depends on Krox-20/Egr2 and other promyelin transcription factors that are activated by axonal signals and control the generation of myelin-forming cells. Myelin-forming cells remain remarkably plastic and can revert to the immature phenotype, a process which is seen in injured nerves and demyelinating neuropathies. We report that c-Jun is an important regulator of this plasticity. At physiological levels, c-Jun inhibits myelin gene activation by Krox-20 or cyclic adenosine monophosphate. c-Jun also drives myelinating cells back to the immature state in transected nerves in vivo. Enforced c-Jun expression inhibits myelination in cocultures. Furthermore, c-Jun and Krox-20 show a cross-antagonistic functional relationship. c-Jun therefore negatively regulates the myelinating Schwann cell phenotype, representing a signal that functionally stands in opposition to the promyelin transcription factors. Negative regulation of myelination is likely to have significant implications for three areas of Schwann cell biology: the molecular analysis of plasticity, demyelinating pathologies, and the response of peripheral nerves to injury.
    The Journal of Cell Biology 06/2008; 181(4):625-37. DOI:10.1083/jcb.200803013 · 9.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the present paper, we determine the localization and developmental regulation of N-cadherin in embryonic rat nerves and examine the role of N-cadherin in this system. We also identify a major transition in the architecture of embryonic nerves and relating it to N-cadherin expression. We find that in early embryonic nerves, N-cadherin is primarily expressed in Schwann cell precursors. Pronounced expression is seen at distal nerve fronts where these cells associate with growth cones, and the proximal nerve ends, in boundary cap cells. Unexpectedly, N-cadherin is downregulated as precursors generate Schwann cells, coinciding with the time at which most axons make target connections. Therefore, glial N-cadherin expression is essentially restricted to the period of axon outgrowth. We also provide evidence that N-cadherin supports the formation of contacts between Schwann cell precursors and show that these cells are a favorable substrate for axon growth, unlike N-cadherin-negative Schwann cells. Induction of N-cadherin expression in Schwann cells by neuregulin-1 restores their ability to form contacts and support axon growth. Finally, we show that the loss of glial N-cadherin during embryonic nerve development is accompanied by a transformation of nerve architecture, involving the appearance of endoneurial connective tissue space, fibroblasts, Schwann cell basal lamina, and blood vessels. Because N-cadherin is likely to promote the extensive glial contacts typical of the compact embryonic nerve, we suggest that N-cadherin loss at the time of Schwann cell generation allows endoneurial space to appear between the glial cells, a development that eventually permits the extensive interactions between connective tissue and individual axon-Schwann cell units necessary for myelination.
    Glia 10/2006; 54(5):439-59. DOI:10.1002/glia.20390 · 5.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuregulin/erbB signaling is critically required for survival and proliferation of Schwann cells as well as for establishing correct myelin thickness of peripheral nerves during development. In this study, we investigated whether erbB2 signaling in Schwann cells is also essential for the maintenance of myelinated peripheral nerves and for Schwann cell proliferation and survival after nerve injury. To this end, we used inducible Cre-loxP technology using a PLP-CreERT2 allele to ablate erbB2 in adult Schwann cells. ErbB2 expression was markedly reduced after induction of erbB2 gene disruption with no apparent effect on the maintenance of already established myelinated peripheral nerves. In contrast to development, Schwann cell proliferation and survival were not impaired in mutant animals after nerve injury, despite reduced levels of MAPK-P (phosphorylated mitogen-activated protein kinase) and cyclin D1. ErbB1 and erbB4 do not compensate for the loss of erbB2. We conclude that adult Schwann cells do not require major neuregulin signaling through erbB2 for proliferation and survival after nerve injury, in contrast to development and in cell culture.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 03/2006; 26(7):2124-31. DOI:10.1523/JNEUROSCI.4594-05.2006 · 6.75 Impact Factor