Article

Afadin: A Novel Actin Filament–binding Protein with One PDZ Domain Localized at Cadherin-based Cell-to-Cell Adherens Junction

Takai Biotimer Project, ERATO, Japan Science and Technology Corporation, c/o JCR Pharmaceuticals Co., Ltd., Kobe 651-22, Japan.
The Journal of Cell Biology (Impact Factor: 9.69). 11/1997; 139(2):517-28. DOI: 10.1083/jcb.139.2.517
Source: PubMed

ABSTRACT A novel actin filament (F-actin)-binding protein with a molecular mass of approximately 205 kD (p205), which was concentrated at cadherin-based cell-to-cell adherens junction (AJ), was isolated and characterized. p205 was purified from rat brain and its cDNA was cloned from a rat brain cDNA library. p205 was a protein of 1,829 amino acids (aa) with a calculated molecular mass of 207,667 kD. p205 had one F-actin-binding domain at 1,631-1,829 aa residues and one PDZ domain at 1,016- 1,100 aa residues, a domain known to interact with transmembrane proteins. p205 was copurified from rat brain with another protein with a molecular mass of 190 kD (p190). p190 was a protein of 1,663 aa with a calculated molecular mass of 188,971 kD. p190 was a splicing variant of p205 having one PDZ domain at 1,009-1,093 aa residues but lacking the F-actin-binding domain. Homology search analysis revealed that the aa sequence of p190 showed 90% identity over the entire sequence with the product of the AF-6 gene, which was found to be fused to the ALL-1 gene, known to be involved in acute leukemia. p190 is likely to be a rat counterpart of human AF-6 protein. p205 bound along the sides of F-actin but hardly showed the F-actin-cross-linking activity. Northern and Western blot analyses showed that p205 was ubiquitously expressed in all the rat tissues examined, whereas p190 was specifically expressed in brain. Immunofluorescence and immunoelectron microscopic studies revealed that p205 was concentrated at cadherin-based cell-to-cell AJ of various tissues. We named p205 l-afadin (a large splicing variant of AF-6 protein localized at adherens junction) and p190 s-afadin (a small splicing variant of l-afadin). These results suggest that l-afadin serves as a linker of the actin cytoskeleton to the plasma membrane at cell-to-cell AJ.

Download full-text

Full-text

Available from: Toyoshi Fujimoto, Jul 06, 2015
0 Followers
 · 
58 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Axon guidance is a key process during nervous system development and regeneration. One of the best established paradigms to study the mechanisms underlying this process is the axon decision of whether or not to cross the midline in the Drosophila CNS. An essential regulator of that decision is the well conserved Slit-Robo signaling pathway. Slit guidance cues act through Robo receptors to repel axons from the midline. Despite good progress in our knowledge about these proteins, the intracellular mechanisms associated with Robo function remain poorly defined. In this work, we found that the scaffolding protein Canoe (Cno), the Drosophila orthologue of AF-6/Afadin, is essential for Slit-Robo signaling. Cno is expressed along longitudinal axonal pioneer tracts, and longitudinal Robo/Fasciclin2-positive axons aberrantly cross the midline in cno mutant embryos. cno mutant primary neurons show a significant reduction of Robo localized in growth cone filopodia and Cno forms a complex with Robo in vivo. Moreover, the commissureless (comm) phenotype (i.e., lack of commissures due to constitutive surface presentation of Robo in all neurons) is suppressed in comm, cno double-mutant embryos. Specific genetic interactions between cno, slit, robo, and genes encoding other components of the Robo pathway, such as Neurexin-IV, Syndecan, and Rac GTPases, further confirm that Cno functionally interacts with the Slit-Robo pathway. Our data argue that Cno is a novel regulator of the Slit-Robo signaling pathway, crucial for regulating the subcellular localization of Robo and for transducing its signaling to the actin cytoskeleton during axon guidance at the midline.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 07/2012; 32(29):10035-44. DOI:10.1523/JNEUROSCI.6342-11.2012 · 6.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Electrical synapses formed by neuronal gap junctions composed of connexin36 (Cx36) occur in most major structures in the mammalian central nervous system. These synapses link ensembles of neurons and influence their network properties. Little is known about the macromolecular constituents of neuronal gap junctions or how transmission through electrical synapses is regulated at the level of channel conductance or gap junction assembly/disassembly. Such knowledge is a prerequisite to understanding the roles of gap junctions in neuronal circuitry. Gap junctions share similarities with tight and adhesion junctions in that all three reside at close plasma membrane appositions, and therefore may associate with similar structural and regulatory proteins. Previously, we reported that the tight junction-associated protein zonula occludens-1 (ZO-1) interacts with Cx36 and is localized at gap junctions. Here, we demonstrate that two proteins known to be associated with tight and adherens junctions, namely AF6 and MUPP1, are components of neuronal gap junctions in rodent brain. By immunofluorescence, AF6 and MUPP1 were co-localized with Cx36 in many brain areas. Co-immunoprecipitation and pull-down approaches revealed an association of Cx36 with AF6 and MUPP1, which required the C-terminus PDZ domain interaction motif of Cx36 for interaction with the single PDZ domain of AF6 and with the 10th PDZ domain of MUPP1. As AF6 is a target of the cAMP/Epac/Rap1 signalling pathway and MUPP1 is a scaffolding protein that interacts with CaMKII, the present results suggest that AF6 may be a target for cAMP/Epac/Rap1 signalling at electrical synapses, and that MUPP1 may contribute to anchoring CaMKII at these synapses.
    European Journal of Neuroscience 12/2011; 35(2):166-81. DOI:10.1111/j.1460-9568.2011.07947.x · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulated spindle orientation maintains epithelial tissue integrity and stem cell asymmetric cell division. In Drosophila melanogaster neural stem cells (neuroblasts), the scaffolding protein Canoe (Afadin/Af-6 in mammals) regulates spindle orientation, but its protein interaction partners and mechanism of action are unknown. In this paper, we use our recently developed induced cell polarity system to dissect the molecular mechanism of Canoe-mediated spindle orientation. We show that a previously uncharacterized portion of Canoe directly binds the Partner of Inscuteable (Pins) tetratricopeptide repeat (TPR) domain. The Canoe-Pins(TPR) interaction recruits Canoe to the cell cortex and is required for activation of the Pins(TPR)-Mud (nuclear mitotic apparatus in mammals) spindle orientation pathway. We show that the Canoe Ras-association (RA) domains directly bind RanGTP and that both the Canoe(RA) domains and RanGTP are required to recruit Mud to the cortex and activate the Pins/Mud/dynein spindle orientation pathway.
    The Journal of Cell Biology 10/2011; 195(3):369-76. DOI:10.1083/jcb.201102130 · 9.69 Impact Factor