Effects of Ultrafine and Fine Particles in Urban Air on Peak Expiratory Flow among Children with Asthmatic Symptoms

Unit of Environmental Epidemiology, National Public Health Institute, Kuopio, Finland.
Environmental Research (Impact Factor: 4.37). 02/1997; 74(1):24-33. DOI: 10.1006/enrs.1997.3750
Source: PubMed


It has been suggested that ultrafine particles in urban air may cause the health effects associated with thoracic particles (PM10). We therefore compared the effects of daily variations in particles of different sizes on peak expiratory flow (PEF) during a 57-day follow-up of 39 asthmatic children aged 7-12 years. The main source of particulate air pollution in the area was traffic. In addition to the measurements of PM10 and black smoke (BS) concentrations, an electric aerosol spectrometer was used to measure particle number concentrations in six size classes ranging from 0.01 to 10.0 microns. Daily variations in BS and particle number concentrations in size ranges between 0.032 and 0.32 micron and between 1.0 and 10.0 microns were highly intercorrelated (correlation coefficients about 0.9). Correlations with PM10 were somewhat lower (below 0.7). All these pollutants tended also to be associated with declines in morning PEF. However, the only statistically significant associations were observed with PM10 and BS. Different time lags of PM10 were also most consistently associated with declines in PEF. Therefore, in the present study on asthmatic children, the concentration of ultrafine particles was no more strongly associated with variations in PEF than PM10 or BS, as has earlier been suggested.

1 Follower
11 Reads
  • Source
    • "A recent study by the California Air Resources Board (CARB 2006) estimated that diesel particulate matter emissions from the port of Los Angeles and Long Beach increase the cancer risk by 60 % of the neighbouring population (Kuwayama et al. 2013). Incidence of asthma, among other diseases, could be linked to exposure to ultrafine particles (UFPs—approximately <100 nm in diameter) (Pekkanen et al. 1997; Li et al. 2003). UFPs deposit with high efficiency in the lower human lung due to their size (Gong et al. 2007). "
    [Show abstract] [Hide abstract]
    ABSTRACT: In this work, an assessment of the impact of ship traffic and related harbour activities (loading/unloading of ships and hotelling in harbour) on PM 2.5 and particle number concentrations (PNC) separating the contribution associated to ship traffic from that of harbour-related activities is reported. Further, an assessment of the impact and environmental risks associated to polycyclic aromatic hydrocarbon (PAH) concentrations was performed. Results refer to the city of Brindisi (88,500 inhabitants) in the south-eastern part of Italy and its harbour (with yearly 9.5 Mt of goods, over 520,000 passengers and over 175,000 vehicles). PM2.5 and PNC concentrations show a clear daily pattern correlated with daily ship traffic pattern in the harbour. High temporal resolution measurements and correlations with wind direction were used to estimate the average direct contribution to measured concentrations of this source. The average relative contribution of ship traffic was 7.4 % (±0.5 %) for PM2.5 and 26 % (±1 %) for PNC. When the contribution associated to harbour-related activities is added, the percentages become 9.3 % (±0.5 %) for PM2.5 and 39 % (±1 %) for PNC. In the site analysed, air coming from the harbour/industrial sector was richer in PAHs (5.34 ng/m(3)) than air sampled from all directions (3.89 ng/m(3)). The major compounds were phenanthrene, fluoranthene and pyrene, but the congener profiles were different in the two direction sectors: air from the harbour/industrial sector was richer in phenanthrene and fluorene, which are the most abundant PAHs in ship emissions. Results showed that lighter PAHs are associated to the gas phase, while high molecular weight congeners are mostly present in the particulate phase. The impact on the site studied of the harbour/industrial source to PAHs was 56 % (range, 29-87 %).
    Environmental Science and Pollution Research 04/2014; 21(15). DOI:10.1007/s11356-014-2849-0 · 2.83 Impact Factor
  • Source
    • "Once deposited in the lung they may penetrate through lung tissue into the blood stream. Considering the adverse health effects to human body, the number concentration of atmospheric PM is more important than the mass concentration (Pekkanen et al., 1997; Wichmann and Peters, 2000; Calvo et al., 2012), however, ambient air quality standards were generally proposed specifically only for 24-hour PM 10 or PM 2.5 mass concentrations. Many previous studies on FP and UFP number concentrations were conducted in the Pearl River Delta (Liu et al., 2008; Yue et al., 2010) and abroad (Wehner et al., 2002; Kulmala et al., 2004; Asmi et al., 2011), Mexico (Dunn et al., 2004), and New "
    [Show abstract] [Hide abstract]
    ABSTRACT: Considering the adverse health effects to human body, the number concentration of atmospheric PM (particulate material) is more important than the mass concentration. CO, NO, NO2, SO2 and number concentrations of PM were obtained from a remote site (Miyun), a roadside site (North Fourth Ring Road) and an urban residential site (Tsinghua University) in Beijing in winter. The size distribution and the possible sources of number concentrations were examined using EPA PMF (positive matrix factorization) model. A data set of totally 9610 of number concentration with the size range of 0.028 μm to 0.948 μm was included in the PMF analysis. The highest total particle number, mass and area of fine particles concentrations were observed at the North Fourth Ring Road site and the lowest were observed at Miyun site. Four factors were identified at Miyun site, as Factor 1 and Factor 4 may be related to long distance transportation, and Factor 2 and Factor 3 may be assigned as coal combustion and locomotive emission nearby, respectively; three factors were identified at North Fourth Ring Road, of which Factor 1 and Factor 3 are traffic related and Factor 2 may be coal combustion related. Compared with Factor 1, the contributions of Factor 3 to NOx and SO2 were 4–5 times higher. Additionally, Factor 3 was also a major contributor to CO. It suggested that Factor 1 and Factor 3 had the same source emission of motor vehicle, but different engine types, fuel types or exhaust treatments. Three factors were identified at Tsinghua site, as Factor 1 may come from aging vehicle emission, and Factor 2 and Factor 3 may be coal combustion related.
    Atmospheric Research 03/2014; 139:90–100. DOI:10.1016/j.atmosres.2014.01.007 · 2.84 Impact Factor
  • Source
    • "particle effects on respiratory function or asthma symptoms in children (Pekkanen et al., 1997; Tiitanen et al., 1999; Andersen et al., 2008). Given that pollution exposure during childhood has been associated with impaired lung function (Jedrychowski et al., 2005) and asthma onset even at high levels of lung function (Islam et al., 2007), interventions that can reduce or mute respiratory effects of pollution during childhood may help to preserve respiratory health later in life. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Objectives: Increased air pollutant concentrations have been linked to several asthma-related outcomes in children, including respiratory symptoms, medication use, and hospital visits. However, few studies have examined effects of ultrafine particles in a pediatric population. Our primary objective was to examine the effects of ambient concentrations of ultrafine particles on asthma exacerbation among urban children and determine whether consistent treatment with inhaled corticosteroids could attenuate these effects. We also explored the relationship between asthma exacerbation and ambient concentrations of accumulation mode particles, fine particles (≤2.5 micrograms [μm]; PM2.5), carbon monoxide, sulfur dioxide, and ozone. We hypothesized that increased 1-7 day concentrations of ultrafine particles and other pollutants would be associated with increases in the relative odds of an asthma exacerbation, but that this increase in risk would be attenuated among children receiving school-based corticosteroid therapy. Methods: We conducted a pilot study using data from 3 to 10 year-old children participating in the School-Based Asthma Therapy trial. Using a time-stratified case-crossover design and conditional logistic regression, we estimated the relative odds of a pediatric asthma visit treated with prednisone (n=96 visits among 74 children) associated with increased pollutant concentrations in the previous 7 days. We re-ran these analyses separately for children receiving medications through the school-based intervention and children in a usual care control group. Results: Interquartile range increases in ultrafine particles and carbon monoxide concentrations in the previous 7 days were associated with increases in the relative odds of a pediatric asthma visit, with the largest increases observed for 4-day mean ultrafine particles (interquartile range=2088p/cm(3); OR=1.27; 95% CI=0.90-1.79) and 7-day mean carbon monoxide (interquartile range=0.17ppm; OR=1.63; 95% CI=1.03-2.59). Relative odds estimates were larger among children receiving school-based inhaled corticosteroid treatment. We observed no such associations with accumulation mode particles, black carbon, fine particles (≤2.5μm), or sulfur dioxide. Ozone concentrations were inversely associated with the relative odds of a pediatric asthma visit. Conclusions: These findings suggest a response to markers of traffic pollution among urban asthmatic children. Effects were strongest among children receiving preventive medications through school, suggesting that this group of children was particularly sensitive to environmental triggers. Medication adherence alone may be insufficient to protect the most vulnerable from environmental asthma triggers. However, further research is necessary to confirm this finding.
    Environmental Research 02/2014; 129:11–19. DOI:10.1016/j.envres.2013.12.001 · 4.37 Impact Factor
Show more