Article

Directional sensibility for quantification of tactile dysfunction.

Department of Physiology, Göteborg University, Sweden.
Muscle & Nerve (Impact Factor: 2.31). 12/1997; 20(11):1414-21. DOI: 10.1002/(SICI)1097-4598(199711)20:113.0.CO;2-D
Source: PubMed

ABSTRACT Examination of tactile directional sensibility, i.e., the ability to tell the direction of an object's motion across the skin, has been recommended by several authors for examination of patients with somatosensory disorders. Recent findings about the physiological mechanisms underlying directional sensibility suggested possibilities to further improve the test. In the present investigation a test was constructed that allowed a semiquantification of the directional sensibility of six body areas within 20 min. Normal values were obtained by testing healthy subjects (n = 40), and the normal values were compared to those obtained in a group of patients with tactile symptoms (n = 20). Ten of the patients had abnormal sensory conduction in one or several nerves, and they also had abnormal directional sensibility. Hence, examination of directional sensibility, according to the present protocol, provides a semiquantitative test that appears to be as sensitive as electrophysiological measurement of conduction in detecting dysfunction in tactile nerves.

0 Bookmarks
 · 
34 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tactile direction discrimination (TDD), the ability to determine the direction of an object's movement across the skin, is used clinically to detect and quantify tactile dysfunction. We have previously identified a cortical network for TDD based on skin stretch information that includes the second somatosensory, anterior insular and dorsolateral prefrontal cortices. In the present study we investigated cortical processing of TDD based on spatiotemporal cues. Sixteen healthy subjects (8 females; mean age, 25.5 years; range, 23-32 years) were stimulated with a low-friction, spatiotemporal rolling wheel on the right thigh during functional magnetic resonance imaging (fMRI). The subjects were instructed to indicate the distal or proximal rolling direction of the stimulus. The fMRI contrast between rolling wheel stimulation and rest showed activations in several areas which included the left (contralateral) primary somatosensory, bilateral second somatosensory, bilateral anterior insular, and bilateral dorsolateral prefrontal cortices. We conclude that, spatiotemporal TDD is processed in a largely similar distributed cortical network as skin stretch TDD. Further, spatiotemporal TDD activated primary somatosensory cortex whereas a role for this area in processing of skin stretch TDD has not been demonstrated.
    Neuroscience Letters 08/2011; 501(1):45-9. · 2.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human skin is innervated with different tactile afferents, which are found at varying densities over the body. We investigate how the relationships between tactile pleasantness, sensitivity and discrimination differ across the skin. Tactile pleasantness was assessed by stroking a soft brush over the skin, using five velocities (0.3, 1, 3, 10, 30 cm s(-1)), known to differentiate hedonic touch, and pleasantness ratings were gained. The ratings velocity-profile is known to correlate with firing in unmyelinated C-tactile (CT) afferents. Tactile sensitivity thresholds were determined using monofilament force detection and the tactile discrimination level was obtained in the direction discrimination of a moving probe; both tasks readily activate myelinated touch receptors. Perceptions were measured over five skin sites: forehead, arm, palm, thigh and shin. The assessment of tactile pleasantness over the skin resulted in a preference for the middle velocities (1-10 cm s(-1)), where higher ratings were gained compared to the slowest and fastest velocities. This preference in tactile pleasantness was found across all the skin sites, apart from at the palm, where no decrease in pleasantness for the faster stroking velocities was seen. We find that tactile sensitivity and discrimination vary across the skin, where the forehead and palm show increased acuity. Tactile sensitivity and discrimination levels also correlated significantly, although the tactile acuity did not relate to the perceived pleasantness of touch. Tactile pleasantness varied in a subtle way across skin sites, where the middle velocities were always rated as the most pleasant, but the ratings at hairy skin sites were more receptive to changes in stroking velocity. We postulate that although the mechanoreceptive afferent physiology may be different over the skin, the perception of pleasant touch can be interpreted using all of the available incoming somatosensory information in combination with central processing.
    Frontiers in Behavioral Neuroscience 01/2014; 8:54. · 4.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, several studies have suggested a role for unmyelinated (C-tactile, CT) low-threshold mechanoreceptive afferents in the allodynic condition. In this psychophysical study we explored the integrity of both Aβ and CT afferent processing following application of the heat capsaicin model of tactile allodynia on the left forearm in healthy subjects (n=40). We measured tactile direction discrimination (TDD) to target the integrity of Aβ processing (n=20). The TDD accuracy was significantly lower in the allodynic compared to a control zone. In addition, we measured the perceived pleasantness and pain of brush stroking at CT targeted (slow) and CT sub-optimal (fast) stroking velocities to investigate the integrity of CT processing (n=20). When comparing touch pleasantness in the allodynic and control zone, there was a significantly larger difference in ratings for CT targeted compared to CT suboptimal stimulation. The results suggest a disturbance in both Aβ-mediated discriminative and CT-mediated affective touch processing in human experimental tactile allodynia. Our findings support the canonical view that tactile allodynia is signaled by Aβ afferents but that CTs seem to contribute by the loss of a pain inhibiting role.
    Neuroscience Letters 01/2014; · 2.03 Impact Factor