Directional sensibility for quantification of tactile dysfunction

Department of Physiology, Göteborg University, Sweden.
Muscle & Nerve (Impact Factor: 2.28). 12/1997; 20(11):1414-21. DOI: 10.1002/(SICI)1097-4598(199711)20:113.0.CO;2-D
Source: PubMed


Examination of tactile directional sensibility, i.e., the ability to tell the direction of an object's motion across the skin, has been recommended by several authors for examination of patients with somatosensory disorders. Recent findings about the physiological mechanisms underlying directional sensibility suggested possibilities to further improve the test. In the present investigation a test was constructed that allowed a semiquantification of the directional sensibility of six body areas within 20 min. Normal values were obtained by testing healthy subjects (n = 40), and the normal values were compared to those obtained in a group of patients with tactile symptoms (n = 20). Ten of the patients had abnormal sensory conduction in one or several nerves, and they also had abnormal directional sensibility. Hence, examination of directional sensibility, according to the present protocol, provides a semiquantitative test that appears to be as sensitive as electrophysiological measurement of conduction in detecting dysfunction in tactile nerves.

6 Reads
  • Source
    • "Tactile direction discrimination testing was carried out using a hand-held stimulator and custom-written program written in MATLAB (The Mathworks, Natick, MA). The stimulator was a small rod with a small, rounded end covered in fine, woven fabric (contact surface 0.5 cm2; see Figure 1B) that contacted the skin with a calibrated force of 16 g (Olausson et al., 1997; Norrsell et al., 2001). The stimulator was moved over the skin site in question in a proximal or distal direction (or right/left on the forehead) over the length of a ruler, which was inked onto the skin. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Human skin is innervated with different tactile afferents, which are found at varying densities over the body. We investigate how the relationships between tactile pleasantness, sensitivity and discrimination differ across the skin. Tactile pleasantness was assessed by stroking a soft brush over the skin, using five velocities (0.3, 1, 3, 10, 30 cm s−1), known to differentiate hedonic touch, and pleasantness ratings were gained. The ratings velocity-profile is known to correlate with firing in unmyelinated C-tactile (CT) afferents. Tactile sensitivity thresholds were determined using monofilament force detection and the tactile discrimination level was obtained in the direction discrimination of a moving probe; both tasks readily activate myelinated touch receptors. Perceptions were measured over five skin sites: forehead, arm, palm, thigh and shin. The assessment of tactile pleasantness over the skin resulted in a preference for the middle velocities (1–10 cm s−1), where higher ratings were gained compared to the slowest and fastest velocities. This preference in tactile pleasantness was found across all the skin sites, apart from at the palm, where no decrease in pleasantness for the faster stroking velocities was seen. We find that tactile sensitivity and discrimination vary across the skin, where the forehead and palm show increased acuity. Tactile sensitivity and discrimination levels also correlated significantly, although the tactile acuity did not relate to the perceived pleasantness of touch. Tactile pleasantness varied in a subtle way across skin sites, where the middle velocities were always rated as the most pleasant, but the ratings at hairy skin sites were more receptive to changes in stroking velocity. We postulate that although the mechanoreceptive afferent physiology may be different over the skin, the perception of pleasant touch can be interpreted using all of the available incoming somatosensory information in combination with central processing.
    Frontiers in Behavioral Neuroscience 02/2014; 8:54. DOI:10.3389/fnbeh.2014.00054 · 3.27 Impact Factor
  • Source
    • "The directional sensibility test used to measure discriminative touch is very sensitive in detecting dysfunction of myelinated Ab fibres (Olausson et al., 1997; Norrsell et al., 2001) (Supplementary Fig. 1). C-fibre denervated patients (n = 10, Supplementary Table 1) and age-, sex-and education-matched healthy control subjects (n = 10) performed equally well on the test (Wilcoxon signed ranks test, P = 0.47; patients' median response profile area = 18, range 18–38; healthy controls' median response profile area = 18, range 18–25), and all results were well within the earlier established normal range (Olausson et al., 1997; Norrsell et al., 2001). "
    [Show abstract] [Hide abstract]
    ABSTRACT: We examined patients with a heritable disorder associated with a mutation affecting the nerve growth factor beta gene. Their condition has been classified as hereditary sensory and autonomic neuropathy type V. Carriers of the mutation show a reduction in density of thin and unmyelinated nerve fibres, including C afferents. A distinct type of unmyelinated, low-threshold mechanoreceptive C fibre, the C-tactile afferent, is present in hairy but not glabrous skin of humans and other mammals. They have been implicated in the coding of pleasant, hedonic touch of the kind that occurs in affiliative social interactions. We addressed the relationship between C fibre function and pleasant touch perception in 10 individuals from a unique population of mutation carriers in Sweden. We also investigated the effect of reduced C-fibre density on patients' evaluation of observed interpersonal touch (empathy). Results showed that patients perceived gentle, slow arm stroking, optimal for eliciting C-tactile afferent responses (1-10  cm/s), as less pleasant than did matched controls and also differed in their rating patterns across stimulation velocities. Further, patients' blood-oxygen-level-dependent responses in posterior insular cortex--a target for C afferents--were not modulated by stimulation optimal for activating C-tactile afferents. Hence, perception of the hedonic aspect of dynamic touch likely depends on C-tactile afferent density. Closely similar patterns between individuals' ratings of felt and seen touch suggest that appraisal of others' touch is anchored in one's own perceptual experience, whether typical or atypical.
    Brain 03/2011; 134(Pt 4):1116-26. DOI:10.1093/brain/awr011 · 9.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have examined a hemispherectomized patient who complained of touch-evoked pricking and burning pain in her paretic hand, especially when the hand was cold. Psychophysical examination showed that for the paretic side she confused cool and warm temperatures, and confirmed that she had a robust allodynia to brush stroking that was enhanced at a cold ambient temperature. Functional magnetic resonance imaging (fMRI) showed that during brush-evoked allodynia, brain structures implicated in normal pain processing (viz. posterior part of the anterior cingulate cortex, secondary somatosensory cortex, and prefrontal cortices) were activated. The fMRI findings thus indicate that the central pain in this patient was served by brain structures implicated in normal pain processing. Possible pathophysiological mechanisms include plasticity as well as thalamic disinhibition.
    European Journal of Pain 02/2001; 5(2):209-17. DOI:10.1053/eujp.2001.0233 · 2.93 Impact Factor
Show more