Oncogenic c-Ki-ras but not oncogenic c-Ha-ras up-regulates CEA expression and disrupts basolateral polarity in colon epithelial cells.

Department of Pathology, State University of New York Health Science Center, Syracuse, New York 13210-2399, USA.
Journal of Biological Chemistry (Impact Factor: 4.65). 11/1997; 272(44):27902-7. DOI: 10.1074/jbc.272.44.27902
Source: PubMed

ABSTRACT Colon carcinomas commonly contain mutations in Ki-ras4B, but very rarely in Ha-ras, suggesting that different Ras isoforms may have distinct functions in colon epithelial cell biology. In an earlier study we had demonstrated that oncogenic Ki-ras4BVal-12, but not oncogenic Ha-rasVal-12, blocks the apicobasal polarization of colon epithelial cells by preventing normal glycosylation of the integrin beta1 chain of the collagen receptor. As a result, only the Ki-ras mutated cells exhibited altered cell to substratum attachment, whereas mutation of either Ras isoform activated mitogen-activated protein kinases. We have now asked whether intercellular adhesion proteins implicated in establishing basolateral polarity in colon epithelial cells are modulated by oncogenic Ki-Ras4BVal-12 proteins but not oncogenic Ha-RasVal-12 proteins. The embryonic adhesion protein carcinoembryonic antigen (CEA) was up-regulated on the mRNA and protein levels in each of three stable Ki-rasVal-12 transfectant lines but in none of three stable Ha-rasVal-12 transfectant lines. The elevated protein levels of CEA in Ki-ras4BVal-12 transfectant cells were decreased by blocking expression of Ki-ras4BVal-12 with antisense oligonucleotides. N-cadherin levels were decreased in only the Ki-ras transfectants, whereas E-cadherin levels were unchanged. Immunohistochemical analysis demonstrated that Ki-ras4BVal-12 transfectant cells did not polarize into cells with discrete apical and basal regions and so could not restrict expression of CEA to the apical region. These unpolarized cells displayed elevated levels of CEA all along their surface membrane where CEA mediated random, multilayered associations of tumor cells. This aggregation was both calcium-independent and blocked by Fab' fragments of anti-CEA monoclonal antibody col-1. Trafficking of the lysosomal cysteine protease cathepsin B may also be altered when cell polarity cannot be established. Ki-ras4BVal-12 transfectant cells expressed 2-fold elevated protein levels of the lysosomal cysteine protease cathepsin B but did not up-regulate cathepsin B mRNA expression. One function of oncogenic c-Ki-Ras proteins in colon cancer progression may be to up-regulate CEA and thus to prevent the lateral adhesion of adjacent colon epithelial cells that normally form a monolayer in vivo.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Proteases, including intracellular proteases, play roles at many different stages of malignant progression. Our focus here is cathepsin B, a lysosomal cysteine cathepsin. High levels of cathepsin B are found in a wide variety of human cancers, levels that often induce secretion and association of cathepsin B with the tumor cell membrane. In experimental models such as transgenic models of murine pancreatic and mammary carcinomas, causal roles for cathepsin B have been demonstrated in initiation, growth/tumor cell proliferation, angiogenesis, invasion and metastasis. Tumor growth in transgenic models is promoted by cathepsin B in tumor-associated cells, e.g., tumor-associated macrophages, as well as in tumor cells. In transgenic models the absence of cathepsin B has been associated with enhanced apoptosis, yet cathepsin B also has been shown to contribute to apoptosis. Cathepsin B is part of a proteolytic pathway identified in xenograft models of human glioma; targeting only cathepsin B in these tumors is less effective than targeting cathepsin B in combination with other proteases or protease receptors. Understanding the mechanisms responsible for increased expression of cathepsin B in tumors and association of cathepsin B with tumor cell membranes is needed to determine whether targeting cathepsin B could be of therapeutic benefit. This article is protected by copyright. All rights reserved.
    PROTEOMICS - CLINICAL APPLICATIONS 02/2014; · 1.81 Impact Factor
  • Tribology and Interface Engineering Series 01/2003; 43:401-408.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Normal intestinal epithelial cells (IECs) could act as non-professional antigen-presenting cells, selectively activating CD8(+)-suppressor T cells. An epithelial cell surface glycoprotein, gp180, recognized by monoclonal antibodies B9 and L12 was determined to be critical in this process. Purification and sequence analysis of mAb B9 reactive material revealed amino-acid sequence homology with CEACAM5. We demonstrate that CEACAM5 has properties attributed to gp180, such as CD8α binding and activation of CD8-associated Lck. CEACAM5 is the only CEACAM member interacting with CD1d through the B3 domain. Its N domain (recognized by B9) is required for CD8α binding. Removal of the N-domain glycosylated residues reduces B9 recognition, CD8α binding affinity, and activation of LcK. Therefore, conformational changes in CEACAM5 glycosylation site are critical for its interaction with CD8α. CEACAM5-activated CD8(+) T cells acquire the ability to suppress the proliferation of CD4(+) T cells in vitro in the presence of interleukin (IL)-15 or IL-7. We provide new insights into the role of CEACAM5 and define its specific immunoregulatory properties among the CEACAMs expressed on IECs. We suggest that unique set of interactions between CEACAM5, CD1d, and CD8 render CD1d more class I-like molecule, facilitating antigen presentation and activation of CD8(+)-suppressor regulatory T cells.Mucosal Immunology advance online publication, 9 October 2013; doi:10.1038/mi.2013.80.
    Mucosal Immunology 10/2013; · 7.54 Impact Factor