Article

Ca2+-activated K+ currents in rat locus coeruleus neurons induced by experimental ischemia, anoxia, and hypoglycemia.

Department of Physiology, Faculty of Medicine, Kyushu University, Fukuoka 812-82, Japan.
Journal of Neurophysiology (Impact Factor: 3.3). 12/1997; 78(5):2674-81.
Source: PubMed

ABSTRACT Ca2+-activated K+ currents in rat locus coeruleus neurons induced by experimental ischemia, anoxia, and hypoglycemia. J. Neurophysiol. 78: 2674-2681, 1997. The effects of metabolic inhibition on membrane currents and N-methyl--aspartic acid (NMDA)-induced currents were investigated in dissociated rat locus coeruleus (LC) neurons by using the nystatin perforated patch recording mode under voltage-clamp conditions. Changes in the intracellular Ca2+ concentration ([Ca2+]i) during the metabolic inhibition were also investigated by using the microfluometry with a fluorescent probe, Indo-1. Removal of both the oxygen and glucose (experimental ischemia), deprivation of glucose (hypoglycemia), and a blockade of electron transport by sodium cyanide (NaCN) or a reduction of the mitochondrial membrane potential with carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazone(FCCP) as experimental anoxia all induced a slowly developing outward current (IOUT) at a holding potential of -40 mV. The application of 10(-4) M NMDA induced a rapid transient peak and a successive steady state inward current and a transient outward current immediately after washout. All treatments related to metabolic inhibition increased the NMDA-induced outward current(INMDA-OUT) and prolonged the one-half recovery time of INMDA-OUT. The reversal potentials of both IOUT and INMDA-OUT were close to the K+ equilibrium potential (EK) of -82 mV. Either charybdotoxin or tolbutamide inhibited the IOUT and INMDA-OUT, suggesting the contribution of Ca2+-activated and ATP-sensitive K+ channels, even though the inhibitory effect of tolbutamide gradually diminished with time. Under the metabolic inhibition, the basal level of [Ca2+]i was increased and the one-half recovery time of the NMDA-induced increase in [Ca2+]i was prolonged. The IOUT induced by NaCN was inhibited by a continuous treatment of thapsigargin but not by ryanodine, indicating the involvement of inositol 1,4, 5-trisphosphate (IP3)-induced Ca2+ release (IICR) store. These findings suggest that energy deficiency causes Ca2+ release from the IICR store and activates continuous Ca2+-activated K+ channels and transient ATP-sensitive K+ channels in acutely dissociated rat LC neurons.

0 Bookmarks
 · 
55 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have characterized the currents that flow during the interspike interval in mouse locus coeruleus (LC) neurons, by application of depolarizing ramps and pulses, and compared our results with information available for rats. A tetrodotoxin (TTX)-sensitive current was the only inward conductance active during the interspike interval; no TTX-insensitive Na(+) or oscillatory currents were detected. Ca(2+)-free and Ba(2+)-containing solutions failed to demonstrate a Ca(2+) current during the interspike interval, although a Ca(2+) current was activated at membrane potentials positive to -40 mV. A high- tetraethylammonium chloride (TEA) (15 mM) sensitive current accounted for almost all the K(+) conductance during the interspike interval. Ca(2+)-activated K(+), inward rectifier and low-TEA (10 muM) sensitive currents were not detected within the interspike interval. Comparison of these findings to those reported for neonatal rat LC neurons indicates that the pacemaker currents are similar, but not identical, in the two species with mice lacking a persistent Ca(2+) current during the interspike interval. The net pacemaking current determined by differentiating the interspike interval from averaged action potential recordings closely matched the net ramp-induced currents obtained either under voltage clamp or after reconstructing this current from pharmacologically isolated currents. In summary, our results suggest the interspike interval pacemaker mechanism in mouse LC neurons involves a combination of a TTX-sensitive Na(+) current and a high TEA-sensitive K(+) current. In contrast with rats, a persistent Ca(2+) current is not involved.
    Neuroscience 09/2010; 170(1):166-77. · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Methyl-CpG-binding protein 2 (MeCP2) deficiency causes Rett syndrome (RTT), a neurodevelopmental disorder characterized by severe cognitive impairment, synaptic dysfunction, and hyperexcitability. Previously we reported that the hippocampus of MeCP2-deficient mice (Mecp2(-/y)), a mouse model for RTT, is more susceptible to hypoxia. To identify the underlying mechanisms we now focused on the anoxic responses of wildtype (WT) and Mecp2(-/y) CA1 neurons in acute hippocampal slices. Intracellular recordings revealed that Mecp2(-/y) neurons show only reduced or no hyperpolarizations early during cyanide-induced anoxia, suggesting potassium channel (K(+) channel) dysfunction. Blocking adenosine-5'-triphosphate-sensitive K(+) channels (K(ATP-)) and big-conductance Ca(2+)-activated K(+) channels (BK-channels) did not affect the early anoxic hyperpolarization in either genotype. However, blocking Ca(2+) release from the endoplasmic reticulum almost abolished the anoxic hyperpolarizations in Mecp2(-/y) neurons. Single-channel recordings confirmed that neither K(ATP)- nor BK-channels are the sole mediators of the early anoxic hyperpolarization. Instead, anoxia Ca(2+)-dependently activated various small/intermediate-conductance K(+) channels in WT neurons, which was less evident in Mecp2(-/y) neurons. Yet, pharmacologically increasing the Ca(2+) sensitivity of small/intermediate-conductance K(Ca) channels fully restored the anoxic hyperpolarization in Mecp2(-/y) neurons. Furthermore, Ca(2+) imaging unveiled lower intracellular Ca(2+) levels in resting Mecp2(-/y) neurons and reduced anoxic Ca(2+) transients with diminished Ca(2+) release from intracellular stores. In conclusion, the enhanced hypoxia susceptibility of Mecp2(-/y) hippocampus is primarily associated with disturbed Ca(2+) homeostasis and diminished Ca(2+) rises during anoxia. This secondarily attenuates the activation of K(Ca) channels and thereby increases the hypoxia susceptibility of Mecp2(-/y) neuronal networks. Since cytosolic Ca(2+) levels also determine neuronal excitability and synaptic plasticity, Ca(2+) homeostasis may constitute a promising target for pharmacotherapy in RTT.
    Neuroscience 11/2010; 171(1):300-15. · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To determine the cellular and molecular mechanisms by which acid-sensing ion channel 1a (ASIC1a) plays its role in the secondary injury after traumatic spinal cord injury (SCI), and validate the neuroprotective effect of ASIC1a suppression in SCI model in vivo. Secondary damage after traumatic SCI contributes to the exacerbation of cellular insult and thereby contributes to spinal cord dysfunction. However, the underlying mechanisms remain largely unknown. Acidosis is commonly involved in the secondary injury process after the injury of central nervous system, but whether ASIC1a is involved in secondary injury after SCI is unclear. Male Sprague-Dawley rats were subjected to spinal contusion using a weight-drop injury approach. Western blotting and immunofluorescence assays were used to observe the change of ASIC1a expression after SCI. The TUNEL staining in vivo as well as the cell viability and death assays in spinal neuronal culture were employed to assess the role of ASIC1a in the secondary spinal neuronal injury. The electrophysiological recording and Ca(2+) imaging were performed to reveal the possible underlying mechanism. The antagonists and antisense oligonucleotide for ASIC1a, lesion volume assessment assay and behavior test were used to estimate the therapeutic effect of ASIC1a on SCI. We show that ASIC1a expression is markedly increased in the peri-injury zone after traumatic SCI. Consistent with the change of ASIC1a expression in injured spinal neurons, both ASIC1a-mediated whole-cell currents and ASIC1a-mediated Ca(2+) entry are significantly enhanced after injury. We also show that increased activity of ASIC1a contributes to SCI-induced neuronal death. Importantly, our results indicate that down-regulation of ASIC1a by antagonists or antisense oligonucleotide reduces tissue damage and promotes the recovery of neurological function after SCI. This study reveals a cellular and molecular mechanism by which ASIC1a is involved in the secondary damage process after traumatic SCI. Our results suggest that blockade of Ca(2+) -permeable ASIC1a may be a potential neuroprotection strategy for the treatment of SCI patients.
    Annals of surgery 06/2011; 254(2):353-62. · 7.90 Impact Factor