Leishmania major: molecular modeling of cysteine proteases and prediction of new nonpeptide inhibitors.

Department of Pathology, University of California, San Francisco 94143, USA.
Experimental Parasitology (Impact Factor: 1.86). 12/1997; 87(3):212-21. DOI: 10.1006/expr.1997.4220
Source: PubMed

ABSTRACT The crystal structures of papain, cruzain, and human liver cathepsin B were used to build homology-based enzyme models of a cathepsin L-like cysteine protease (cpL) and a cathepsin B-like cysteine protease (cpB) from the protozoan parasite Leishmania major. Although structurally a member of the cathepsin B subfamily, the L. major cpB is not able to cleave synthetic substrates having an arginine in position P2. This biochemical property correlates with the prediction of a glycine instead of a glutamic acid at position 205 (papain numbering). The modeled active sites of the L. major cpB and cpL were used to screen the Available Chemicals Directory (a database of about 150,000 commercially available compounds) for potential cysteine protease inhibitors, using DOCK3.5. Based on both steric and force field considerations, 69 compounds were selected. Of these, 18 showed IC50's between 50 and 100 microM and 3 had IC50's below 50 microM. A secondary library of compounds, originally derived from a structural screen against the homologous protease of Plasmodium falciparum (falcipain), and subsequently expanded by combinatorial chemistry, was also screened. Three inhibitors were identified which were not only effective against the L. major protease but also inhibited parasite growth at 5-50 microM.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leishmania cysteine proteases are potential vaccine candidates and drug targets. To study the role of cathepsin B cysteine protease, we have generated and characterized cathepsin B null mutant L. donovani parasites. L. donovani cathepsin B null mutants grow normally in culture, but they show significantly attenuated virulence inside macrophages. Quantitative proteome profiling of wild type and null mutant parasites indicates cathepsin B disruption induced remodeling of L. donovani proteome. We identified 83 modulated proteins, of which 65 are decreased and 18 are increased in the null mutant parasites, and 66% (55/83) of the modulated proteins are L. donovani secreted proteins. Proteins involved in oxidation-reduction (trypanothione reductase, peroxidoxins, tryparedoxin, cytochromes) and translation (ribosomal proteins) are among those decreased in the null mutant parasites, and most of these proteins belong to the same complex network of proteins. Our results imply virulence role of cathepsin B via regulation of Leishmania secreted proteins.
    PLoS ONE 11/2013; 8(11):e79951. DOI:10.1371/journal.pone.0079951 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of 14 (E)-cinnamic N-acylhydrazone derivatives, designed through molecular hybridization between the (E)-1-(benzo[d][1,3]dioxol-5-yl)-3-(4-bromophenyl)prop-2-en-1-one and (E)-3-hydroxy-N'-((2-hydroxynaphthalen-1-yl)methylene)-7-methoxy-2-naphthohydrazide, were tested for in vitro antiparasitic activity upon axenic amastigote forms of Leishmania donovani and bloodstream forms of Trypamosoma brucei rhodesiense. The derivative (2E)-3-(4-hydroxy-3-methoxy-5-nitrophenyl)-N'-[(1E)-phenylmethylene]acrylohydrazide showed moderate antileishmanial activity (IC50 = 6.27 µM) when compared to miltefosine, the reference drug (IC50 = 0.348 µM). However, the elected compound showed an excellent selectivity index; in one case it was not cytotoxic against mammalian L-6 cells. The most active antitrypanosomal compound, the derivative (E)-N'-(3,4-dihydroxybenzylidene)cinnamohydrazide (IC50 = 1.93 µM), was cytotoxic against mammalian L-6 cells.
    Molecules 12/2014; 19(12):20374-81. DOI:10.3390/molecules191220374 · 2.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cysteine proteases of the papain superfamily are present in nearly all eukaryotes. They play pivotal roles in the biology of parasites and inhibition of cysteine proteases is emerging as an important strategy to combat parasitic diseases such as sleeping sickness, Chagas' disease and leishmaniasis. Homology modeling of the mature Leishmania mexicana cysteine protease CPB2.8 suggested that it differs significantly from bovine cathepsin B and thus could be a good drug target. High throughput screening of a compound library against this enzyme and bovine cathepsin B in a counter assay identified four novel inhibitors, containing the warhead-types semicarbazone, thiosemicarbazone and triazine nitrile, that can be used as leads for antiparasite drug design. Covalent docking experiments confirmed the SARs of these lead compounds in an effort to understand the structural elements required for specific inhibition of CPB2.8. This study has provided starting points for the design of selective and highly potent inhibitors of L. mexicana cysteine protease CPB that may also have useful efficacy against other important cysteine proteases.
    PLoS ONE 10/2013; 8(10):e77460. DOI:10.1371/journal.pone.0077460 · 3.53 Impact Factor

Full-text (6 Sources)

Available from
May 16, 2014