Article

Currents evoked by GABA and glycine in acutely dissociated neurons from the rat medial preoptic nucleus.

Astra Pain Control AB, Novum Unit, Huddinge, Sweden.
Brain Research (Impact Factor: 2.83). 11/1997; 770(1-2):256-60. DOI: 10.1016/S0006-8993(97)00857-3
Source: PubMed

ABSTRACT The responses of acutely dissociated medial preoptic neurons to application of GABA, and glycine were studied using the perforated-patch whole-cell recording technique under voltage-clamp conditions. GABA, at a concentration of 1 mM, evoked outward currents in all cells (n = 33) when studied at potentials positive to -80 mV. The I-V relation was roughly linear. The currents evoked by GABA were partially blocked by 25-75 microM picrotoxin and were also partially or completely blocked by 100-200 microM bicuculline. Glycine, at a concentration of 1 mM, did also evoke outward currents in all cells (n = 12) when studied at potentials positive to -75 mV. The I-V relation was roughly linear. The currents evoked by glycine were largely blocked by 1 microM strychnine. In conclusion, the present work demonstrates that neurons from the medial preoptic nucleus of rat directly respond to the inhibitory transmitters GABA and glycine with currents that can be attributed to GABAA receptors and glycine receptors respectively.

0 Followers
 · 
57 Views
  • Source
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The preoptic area regulates body temperature. GABA-ergic terminals and receptors are present in this area. Local microinjection studies have shown that GABA, its agonist, and its antagonist in this area may modulate body temperature. However, there are warm and cold sensitive neurons, and they are known to be affected by local and peripheral temperatures. In order to understand the mechanism of action of GABA in temperature regulation at the cellular level it was necessary to study the effect of GABA on individual thermosensitive neurons in in vivo preparations. Hence, in this study the responses of preoptic area thermosensitive and insensitive neurons to microiontophoretic application of picrotoxin, a GABA-A antagonist, were studied in anaesthetized rats. It was observed that a majority of both the thermosensitive and insensitive neurons were affected by microiontophoretic application of picrotoxin. Although almost an equal number of cold and warm sensitive neurons were affected, a majority of the cold sensitive neurons were excited, while a majority of the warm sensitive neurons were inhibited by picrotoxin. The results suggested that in normal conditions GABA acts through GABA-A receptor in modulating the spontaneous activity of thermosensitive neurons in the preoptic area. Furthermore, the results of the present study taken together with other reports suggest that normally GABA exerts a direct inhibitory action on the cold sensitive neurons, while it acts on presynaptic heteroreceptors, possibly on norepinephrinergic afferent input terminals on the warm sensitive neurons, for mediating its action. © 2001 John Wiley & Sons, Inc. J Neurobiol 48: 291–300, 2001
    Journal of Neurobiology 09/2001; 48(4):291 - 300. DOI:10.1002/neu.1058 · 3.84 Impact Factor