Article

Currents evoked by GABA and glycine in acutely dissociated neurons from the rat medial preoptic nucleus.

Astra Pain Control AB, Novum Unit, Huddinge, Sweden.
Brain Research (Impact Factor: 2.88). 11/1997; 770(1-2):256-60. DOI: 10.1016/S0006-8993(97)00857-3
Source: PubMed

ABSTRACT The responses of acutely dissociated medial preoptic neurons to application of GABA, and glycine were studied using the perforated-patch whole-cell recording technique under voltage-clamp conditions. GABA, at a concentration of 1 mM, evoked outward currents in all cells (n = 33) when studied at potentials positive to -80 mV. The I-V relation was roughly linear. The currents evoked by GABA were partially blocked by 25-75 microM picrotoxin and were also partially or completely blocked by 100-200 microM bicuculline. Glycine, at a concentration of 1 mM, did also evoke outward currents in all cells (n = 12) when studied at potentials positive to -75 mV. The I-V relation was roughly linear. The currents evoked by glycine were largely blocked by 1 microM strychnine. In conclusion, the present work demonstrates that neurons from the medial preoptic nucleus of rat directly respond to the inhibitory transmitters GABA and glycine with currents that can be attributed to GABAA receptors and glycine receptors respectively.

0 Bookmarks
 · 
41 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The medial preoptic area (MPOA) of the hypothalamus is critically involved in the regulation of male sexual behavior and has been implicated in several homeostatic processes. Serotonin (5-hydroxytryptamine, 5-HT) inhibits sexual behavior via effects in the MPOA, where there are high densities of 5-HT(1A) and 5-HT(1B) receptor subtypes. We used whole-cell recordings under voltage-clamp conditions to investigate the serotonergic modulation of gamma-aminobutyric acid (GABA)ergic and glutamatergic synaptic transmission in mechanically dissociated rat MPOA neurons with native presynaptic nerve endings. Spontaneous GABAergic miniature inhibitory postsynaptic currents (mIPSCs) in the MPOA were completely blocked by bicuculline. Serotonin reversibly reduced the GABAergic mIPSC frequency without affecting the mean current amplitude. Serotonergic inhibition of mIPSC frequency was mimicked by (+/-)-8-hydroxy-2-dipropylaminotetralin hydrobromide, a specific 5-HT(1A) receptor agonist, and blocked by 1-(2-methoxyphenyl)-4-[4-(2-phthalimido)butyl] piperazine hydrobromide, a specific 5-HT(1A) receptor antagonist. 6-Cyano-7-nitroquinoxaline-2,3-dione completely blocked spontaneous glutamatergic miniature excitatory postsynaptic currents (mEPSCs) in the MPOA. Serotonin reversibly decreased the glutamatergic mEPSC frequency without affecting the mean current amplitude. Serotonergic inhibition of mEPSC frequency was mimicked by CGS 12066B, a specific 5-HT(1B) receptor agonist, and blocked by SB 216641, a specific 5-HT(1B) receptor antagonist. Stimulation of adenylyl cyclase with forskolin increased the frequencies of GABAergic mIPSCs and glutamatergic mEPSCs, and blocked the inhibitory effects of 5-HT. H-89, a selective protein kinase A (PKA) inhibitor, decreased the frequencies of GABAergic mIPSCs and glutamatergic mEPSCs, and blocked their reduction by 5-HT. These findings suggest that 5-HT reduces the frequency of GABAergic mIPSCs and glutamatergic mEPSCs through 5-HT(1A) and 5-HT(1B) receptor-mediated inhibition, respectively, of the PKA-dependent pathway in the presynaptic nerve terminals of MPOA neurons.
    Neuropsychopharmacology 02/2008; 33(2):340-52. · 8.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Desensitization of ligand-gated ion channels plays a critical role for the information transfer between neurons. The current view on γ-aminobutyric acid (GABA)(A) and glycine receptors includes significant rapid components of desensitization as well as cross-desensitization between the two receptor types. Here, we analyze the mechanism of apparent cross-desensitization between native GABA(A) and glycine receptors in rat central neurons and quantify to what extent the current decay in the presence of ligand is a result of desensitization versus changes in intracellular Cl(-) concentration ([Cl(-)](i)). We show that apparent cross-desensitization of currents evoked by GABA and by glycine is caused by changes in [Cl(-)](i). We also show that changes in [Cl(-)](i) are critical for the decay of current in the presence of either GABA or glycine, whereas changes in conductance often play a minor role only. Thus, the currents decayed significantly quicker than the conductances, which decayed with time constants of several seconds and in some cells did not decay below the value at peak current during 20-s agonist application. By taking the cytosolic volume into account and numerically computing the membrane currents and expected changes in [Cl(-)](i), we provide a theoretical framework for the observed effects. Modeling diffusional exchange of Cl(-) between cytosol and patch pipettes, we also show that considerable changes in [Cl(-)](i) may be expected and cause rapidly decaying current components in conventional whole cell or outside-out patch recordings. The findings imply that a reevaluation of the desensitization properties of GABA(A) and glycine receptors is needed.
    The Journal of General Physiology 11/2011; 138(6):609-26. · 4.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Temperate zone animals time the onset of reproductive events to coincide with specific portions of the sidereal year. Although the neural mechanisms involved remain poorly understood, a marked annual variation in the brain's sensitivity to estradiol negative feedback is thought to mediate many of the changes in neuroendocrine hormone secretion, especially that of the gonadotropin-releasing hormone (GnRH) neurons, via neural afferents. The aim of the present study was to determine whether glutamatergic inputs to GnRH neurons in sheep vary seasonally and to expand our previous observations of seasonal changes in gamma-aminobutyric acid (GABA)-ergic inputs. Brains from adult sheep were collected during the breeding season (N = 8) or the nonbreeding season (anestrus; N = 7). Confocal microscopy and optical sectioning were used to quantify the density of labeled VGLUT2 and VGAT immunoreactivity onto GnRH neurons. The results reveal a significantly greater number of VGLUT2-ir inputs to GnRH dendrites during the breeding season vs. the nonbreeding season but no seasonal changes on GnRH cell somas. The number of VGAT-ir terminals onto GnRH dendrites was reduced in the breeding season compared with the nonbreeding season. GnRH neurons were also found to receive dual-phenotype (VGLUT + VGAT) inputs; these varied with season in a manner similar to VGAT inputs. Morphologically, the numbers of branches of proximal dendrites increased significantly in a subset of GnRH neurons located near the midline. Together these results reveal a dynamic seasonal reorganization of identified inputs onto GnRH neurons and lend additional support to the overall hypothesis that seasonal modulation of GnRH neurons involves glutamatergic and GABAergic neural plasticity.
    The Journal of Comparative Neurology 09/2009; 515(6):615-28. · 3.66 Impact Factor