The ORF3 protein of hepatitis E virus is a phosphoprotein that associates with the cytoskeleton.

Virology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
Journal of Virology (Impact Factor: 4.65). 01/1998; 71(12):9045-53.
Source: PubMed

ABSTRACT Hepatitis E virus (HEV) is a major human pathogen in the developing world. In the absence of an in vitro culture system, very little information exists on the basic biology of the virus. A small protein (approximately 13.5 kDa) of unknown function, pORF3, is encoded by the third open reading frame of HEV. We expressed pORF3 in transiently transfected COS-1 and Huh-7 cells and showed that it is a phosphoprotein which is modified at a serine residue(s). Deletion and site-directed mutants were created to establish Ser-80 as the phosphorylation site. This residue is present within a conserved primary sequence that showed consensus sites for phosphorylation by p34cdc2 kinase (cdc2K) and mitogen-activated protein kinase (MAPK). In vitro experiments with hexahistidine-tagged pORF3 expressed either in Escherichia coli or in COS-1 cells showed efficient phosphorylation with exogenously added MAPK. The pORF3 mutants also exhibited an in vitro phosphorylation profile with MAPK which was identical to that observed in vivo. In its primary sequence, pORF3 possesses two highly hydrophobic N-terminal domains. On subcellular fractionation, pORF3 was found to partition with the cytoskeletal fraction, and this association with the cytoskeleton was lost on deletion of hydrophobic domain I (amino acid residues 1 to 32). These results suggest that HEV pORF3 is a cytoskeleton-associated phosphoprotein and are discussed in terms of a possible function for pORF3 within the HEV replicative cycle.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis E is considered an emerging human viral disease in industrialized countries. Studies from Switzerland report a human seroprevalence of hepatitis E virus (HEV) of 2.6-21%, a range lower than in adjacent European countries. The aim of this study was to determine whether HEV seroprevalence in domestic pigs and wild boars is also lower in Switzerland and whether it is increasing and thus indicating that this zoonotic viral infection is emerging. Serum samples collected from 2,001 pigs in 2006 and 2011 and from 303 wild boars from 2008 to 2012 were analysed by ELISA for the presence of HEV-specific antibodies. Overall HEV seroprevalence was 58.1% in domestic pigs and 12.5% in wild boars. Prevalence in domestic pigs was significantly higher in 2006 than in 2011. In conclusion, HEV seroprevalence in domestic pigs and wild boars in Switzerland is comparable with the seroprevalence in other countries and not increasing. Therefore, prevalence of HEV in humans must be related to other factors than prevalence in pigs or wild boars.
    Zoonoses and Public Health 02/2014; · 2.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fulminant hepatic failure (FHF) is the severe form of hepatitis E virus infection. Virus sequence analyses from severe cases have shown presence of unique and highly conserved mutations in the helicase domain of genotype 1, 3 and 4 viruses. We evaluated role of two amino acid replacements (L1110F) and (V1120I); found to be frequent in genotype 1 FHF-E viruses from India. Three mutant helicase proteins (two with single point mutations and one with dual mutations) were expressed in Escherichia coli and evaluated for their ATPase and RNA unwinding activities. Both L1110F and V1120I helicase mutants showed marginal decrease in ATPase activity, while L1110F/V1120I dual mutant showed normal ATPase activity. All three mutants proteins showed RNA unwinding activities comparable to wild type protein. Corresponding mutations were made in the helicase domain of HEV RLuc replicon and replication efficiencies were tested in the S10-3 (Huh 7) cells. The mutant replicon V1120I showed lower replication as compared to L1110F and L1110F/V1120I mutants. However, all three replicon mutants showed lower replication efficiencies as compared to the wild type replicon. Walker A and Walker B motif mutant HEV replicons were unable to replicate indicating essential role of the virus encoded helicase domain during HEV replication. FHF-E associated helicase mutations resulted in only marginal decrease in the virus replication suggesting alternate function/s of the helicase protein. Mutations in the helicase domain of FHF-E viruses may be responsible for changing virus or host-virus protein–protein interactions, causing alterations in the host responses, eventually leading to more severe disease manifestations.
    Virus Research 05/2014; · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recipients of allogeneic stem cell transplantations are at risk of acquiring acute hepatitis E virus (HEV) infection, leading to chronicity. We review the incidence, sequela, extrahepatic manifestations, and treatment of hepatitis due to HEV infection in allogeneic hematopoietic stem cell transplantation (alloHSCT) recipients.
    Current Opinion in Infectious Diseases 06/2014; · 5.03 Impact Factor

Full-text (2 Sources)

Available from
May 19, 2014