Recovery of protein structure from contact maps.

Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel.
Folding and Design 02/1997; 2(5):295-306. DOI: 10.1016/S1359-0278(97)00041-2
Source: arXiv

ABSTRACT Prediction of a protein's structure from its amino acid sequence is a key issue in molecular biology. While dynamics, performed in the space of two-dimensional contact maps, eases the necessary conformational search, it may also lead to maps that do not correspond to any real three-dimensional structure. To remedy this, an efficient procedure is needed to reconstruct three-dimensional conformations from their contact maps.
We present an efficient algorithm to recover the three-dimensional structure of a protein from its contact map representation. We show that when a physically realizable map is used as target, our method generates a structure whose contact map is essentially similar to the target. furthermore, the reconstructed and original structures are similar up to the resolution of the contact map representation. Next, we use nonphysical target maps, obtained by corrupting a physical one; in this case, our method essentially recovers the underlying physical map and structure. Hence, our algorithm will help to fold proteins, using dynamics in the space of contact maps. Finally, we investigate the manner in which the quality of the recovered structure degrades when the number of contacts is reduced.
The procedure is capable of assigning quickly and reliably a three-dimensional structure to a given contact map. It is well suited for use in parallel with dynamics in contact map space to project a contact map onto its closest physically allowed structural counterpart.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As a nature-inspired search algorithm, firefly algorithm (FA) has several control parameters, which may have great effects on its performance. In this study, we investigate the parameter selection and adaptation strategies in a modified firefly algorithm - adaptive firefly algorithm (AdaFa). There are three strategies in AdaFa including (1) a distance-based light absorption coefficient; (2) a gray coefficient enhancing fireflies to share difference information from attractive ones efficiently; and (3) five different dynamic strategies for the randomization parameter. Promising selections of parameters in the strategies are analyzed to guarantee the efficient performance of AdaFa. AdaFa is validated over widely used benchmark functions, and the numerical experiments and statistical tests yield useful conclusions on the strategies and the parameter selections affecting the performance of AdaFa. When applied to the real-world problem - protein tertiary structure prediction, the results demonstrated improved variants can rebuild the tertiary structure with the average root mean square deviation less than 0.4Å and 1.5Å from the native constrains with noise free and 10% Gaussian white noise.
    PLoS ONE 11/2014; 9(11):e112634. DOI:10.1371/journal.pone.0112634 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Author Summary Here, we introduce a novel protein contact prediction method PconsC2 that, to the best of our knowledge, outperforms earlier methods. PconsC2 is based on our earlier method, PconsC, as it utilizes the same set of contact predictions from plmDCA and PSICOV. However, in contrast to PconsC, where each residue pair is analysed independently, the initial predictions are analysed in context of neighbouring residue pairs using a deep learning approach, inspired by earlier work. We find that for each layer the deep learning procedure improves the predictions. At the end, after five layers of deep learning and inclusion of a few extra features provides the best performance. An improvement can be seen for all types of proteins, independent on length, number of homologous sequences and structural class. However, the improvement is largest for β-sheet containing proteins. Most importantly the improvement brings for the first time sufficiently accurate predictions to some protein families with less than 1000 homologous sequences. PconsC2 outperforms as well state of the art machine learning based predictors for protein families larger than 100 effective sequences. PconsC2 is licensed under the GNU General Public License v3 and freely available from
    PLoS Computational Biology 11/2014; 10(11):e1003889. DOI:10.1371/journal.pcbi.1003889 · 4.83 Impact Factor
  • Source

Full-text (2 Sources)

Available from
May 29, 2014