The Effects of Perinatal/Juvenile Methoxychlor Exposure on Adult Rat Nervous, Immune, and Reproductive System Function

National Toxicology Program, NIEHS, North Carolina 27709, USA.
Fundamental and Applied Toxicology 12/1997; 40(1):138-57. DOI: 10.1093/toxsci/40.1.138
Source: PubMed


In order to address data gaps identified by the NAS report Pesticides in the Diets of Infants and Children, a study was performed using methoxychlor (MXC). Female rats were gavaged with MXC at 0, 5, 50, or 150 mg/kg/day for the week before and the week after birth, whereupon the pups were directly dosed with MXC from postnatal day (pnd) 7. Some dams were killed pnd7 and milk and plasma were assayed for MXC and metabolites. For one cohort of juveniles, treatment stopped at pnd21; a modified functional observational battery was used to assess neurobehavioral changes. Other cohorts of juveniles were dosed until pnd42 and evaluated for changes to the immune system and for reproductive toxicity. Dose-dependent amounts of MXC and metabolites were present in milk and plasma of dams and pups. The high dose of MXC reduced litter size by approximately 17%. Ano-genital distance was unchanged, although vaginal opening was accelerated in all treated groups, and male prepuce separation was delayed at the middle and high doses by 8 and 34 days, respectively. In the neurobehavioral evaluation, high-dose males were more excitable, but other changes were inconsistent and insubstantial. A decrease in the antibody plaque-forming cell response was seen in males only. Adult estrous cyclicity was disrupted at 50 and 150 MXC, doses which also showed reduced rates of pregnancy and delivery. Uterine weights (corrected for pregnancy) were reduced in all treated pregnant females. High-dose males impregnated fewer untreated females; epididymal sperm count and testis weight were reduced at the high, or top two, doses, respectively. All groups of treated females showed uterine dysplasias and less mammary alveolar development; estrous levels of follicle stimulating hormone were lower in all treated groups, and estrus progesterone levels were lower at 50 and 150 MXC, attributed to fewer corpora lutea secondary to ovulation defects. These data collectively show that the primary adult effects of early exposure to MXC are reproductive, show that 5 mg/kg/day is not a NO(A)EL in rats with this exposure paradigm (based on changes in day of vaginal opening, pubertal ovary weights, adult uterine and seminal vesicle weights, and female hormone data) and imply that the sites of action are both central and peripheral.

Download full-text


Available from: Robert Chapin,
51 Reads
  • Source
    • "In males, the same treatment inhibits organogenesis of accessory reproductive organs and decreases plasma testosterone levels (Cooke and Eroschenko, 1990; Eroschenko et al., 1995, 1997). Similar effects on reproductive organs have been also observed in male and female rats (for reviews see Chapin et al., 1997; Cummings, 1997; Laws et al., 2000). "
    [Show abstract] [Hide abstract]
    ABSTRACT: During perinatal life, sex steroids, such as estradiol, have marked effects on the development and function of the nervous system. Environmental estrogens or xenoestrogens are man-made chemicals, which animal and human population encounter in the environment and which are able to disrupt the functioning of the endocrine system. Scientific interest in the effects of exposure to xenoestrogens has focused more on fertility and reproductive behaviors, while the effects on cognitive behaviors have received less attention. Therefore, the present study explored whether the organochlorine insecticide Methoxychlor (MXC), with known xenoestrogens properties, administered during the perinatal period (from gestational day 11 to postnatal day 8) to pregnant-lactating females, at an environmentally relevant dose (20 µg/kg (body weight)/day), would also affect learning and memory functions depending on the hippocampus of male and female offspring mice in adulthood. When tested in adulthood, MXC perinatal exposure led to an increase in anxiety-like behavior and in short-term spatial working memory in both sexes. Emotional learning was also assessed using a contextual fear paradigm and MXC treated male and female mice showed an enhanced freezing behavior compared to controls. These results were correlated with an increased survival of adult generated cells in the adult hippocampus. In conclusion, our results show that perinatal exposure to an environmentally relevant dose of MXC has an organizational effect on hippocampus-dependent memory and emotional behaviors.
    Frontiers in Behavioral Neuroscience 06/2014; DOI:10.3389/fnbeh.2014.00202 · 3.27 Impact Factor
  • Source
    • "It has been well established that MXC mimics E2 action in vivo and can cause adverse developmental and reproductive effects in rodents such as: embryo toxicity, precocious puberty, decreased fertility and ovarian atrophy. Chapin and colleagues 31 described changes in reproductive, immune and nervous system function in juvenile mice exposed to methoxychlor. Others have observed specific effects on male reproductive development in mice due to exposure during fetal life 32. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Vascular endothelial growth factor (VEGF) is essential for normal vascular growth and development during wound repair. VEGF is estrogen responsive and capable of regulating its own receptor, vascular endothelial growth factor receptor-2 (VEGFR-2). Several agricultural pesticides (e.g., methoxychlor) have estrogenic potential that can initiate inappropriate physiological responses in estrogenic-sensitive tissues following exposure in vivo. Thus, the current study was designed to determine whether the VEGFR-2-Luciferase (Luc) reporter transgenic mouse is a useful model for evaluating estrogenic tendencies of methoxychlor by monitoring wound healing via VEGFR-2-mediated gene expression using bioluminescence and real-time imaging technology. Results: VEGFR-2-Luc gene activity peaked by d 7 (P<0.001) in all groups but was not different (P>0.05) between control and estrogen/methoxychlor exposed mice. Conclusions: Changes in VEGFR-2-Luc gene activity associated with the dermal wound healing process were able to be measured via photonic emission. The increase in vasculature recruitment and formation is paralleled by the increase of VEGFR-2-Luc activity with a peak on day 7. However, estrogen/methoxychlor did not significantly alter wound healing mediated VEGFR-2-Luc gene expression patterns compared to controls. This suggests that the VEGFR-2-Luc transgenic mouse wound model tested in this study may not be optimal for use as a screen for the angiogenic potential of estrogenic compounds.
    International journal of medical sciences 04/2014; 11(6):545-553. DOI:10.7150/ijms.6994 · 2.00 Impact Factor
  • Source
    • "Based on this study, they concluded that a dose-dependent reduction in numbers of epididymal spermatozoa and testicular spermatids, which was evident in the higher two dose groups (Chapin et al., 1997), was correlated to reduced numbers of Sertoli cells, spermatogonia, and spermatids per testis (Johnson et al., 2002; Staub et al., 2002). Staub et al. (2002) also reported that the ratio of spermatid number per spermatogonia was increased significantly in methoxychlor-treated males, perhaps in an attempt to compensate for the reduction in number of spermatogonia. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Methoxychlor is an organochlorine pesticide having a weak estrogenicity, which is estimated to be approximately 1000- to 14,000-fold less potent to a natural ligand, 17β-estradiol. However, its active metabolite, hydroxyphenyltrichloroethane, has much more potent estrogenic activity and probably acts in the target organs of animals exposed to methoxychlor at least 100 times stronger than the parent compound. A variety of in vivo reproductive toxicity studies have shown that treatment with methoxychlor exerts typical endocrine-disrupting effects manifest as estrogenic effects, such as formation of cystic ovaries resulting in ovulation failures, uterine hypertrophy, hormonal imbalances, atrophy of male sexual organs, and deteriorations of sperm production in rats and/or mice, through which it causes serious reproductive damages in both sexes of animals at sufficient dose levels. However, methoxychlor is not teratogenic. The no-observed-adverse-effect level of methoxychlor among reliable experimental animal studies in terms of the reproductive toxicity is 10ppm (equivalent to 0.600mg/kg/day) in a two-generation reproduction toxicity study.
    Vitamins & Hormones 01/2014; 94C:193-210. DOI:10.1016/B978-0-12-800095-3.00007-9 · 2.04 Impact Factor
Show more