Rapid noninvasive detection of experimental atherosclerotic lesions with novel 99mTc-labeled diadenosine tetraphosphates.

Department of Radiology, Massachusetts General Hospital, Boston, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 02/1998; 95(2):691-5. DOI: 10.1073/pnas.95.2.691
Source: PubMed

ABSTRACT The development of a noninvasive imaging procedure for identifying atherosclerotic lesions is extremely important for the clinical management of patients with coronary artery and peripheral vascular disease. Although numerous radiopharmaceuticals have been proposed for this purpose, none has demonstrated the diagnostic accuracy required to replace invasive angiography. In this report, we used the radiolabeled purine analog, 99mTc diadenosine tetraphosphate (Ap4A; AppppA, P1,P4-di(adenosine-5')-tetraphosphate) and its analogue 99mTc AppCHClppA for imaging experimental atherosclerotic lesions in New Zealand White rabbits. Serial gamma camera images were obtained after intravenous injection of the radiolabeled dinucleotides. After acquiring the final images, the animals were sacrificed, ex vivo images of the aortas were recorded, and biodistribution was measured. 99mTc-Ap4A and 99mTc AppCHClppA accumulated rapidly in atherosclerotic abdominal aorta, and lesions were clearly visible within 30 min after injection in all animals that were studied. Both radiopharmaceuticals were retained in the lesions for 3 hr, and the peak lesion to normal vessel ratio was 7.4 to 1. Neither of the purine analogs showed significant accumulation in the abdominal aorta of normal (control) rabbits. The excised aortas showed lesion patterns that were highly correlated with the in vivo and ex vivo imaging results. The present study demonstrates that purine receptors are up-regulated in experimental atherosclerotic lesions and 99mTc-labeled purine analogs have potential for rapid noninvasive detection of plaque formation.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cardiovascular diseases (CVD) are the leading cause of mortality worldwide. Despite major advances in the treatment of CVD, a high proportion of CVD victims die suddenly while being apparently healthy, the great majority of these accidents being due to the rupture or erosion of a vulnerable coronary atherosclerotic plaque. A non-invasive imaging methodology allowing the early detection of vulnerable atherosclerotic plaques in selected individuals prior to the occurrence of any symptom would therefore be of great public health benefit. Nuclear imaging could allow the identification of vulnerable patients by non-invasive in vivo scintigraphic imaging following administration of a radiolabeled tracer. The purpose of this review is to provide an overview of radiotracers that have been recently evaluated for the detection of vulnerable plaques together with the biological rationale that initiated their development. Radiotracers targeted at the inflammatory process seem particularly relevant and promising. Recently, macrophage targeting allowed the experimental in vivo detection of atherosclerosis using either SPECT or PET. A few tracers have also been evaluated clinically. Targeting of apoptosis and macrophage metabolism both allowed the imaging of vulnerable plaques in carotid vessels of patients. However, nuclear imaging of vulnerable plaques at the level of coronary arteries remains challenging, mostly because of their small size and their vicinity with unbound circulating tracer. The experimental and pilot clinical studies reviewed in the present paper represent a fundamental step prior to the evaluation of the efficacy of any selected tracer for the early, non-invasive detection of vulnerable patients.
    Current Medicinal Chemistry 02/2009; 16(12):1499-511. · 3.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 1 Purinergic signalling is involved both in short-term control of vascular tone and in longer-term control of cell proliferation, migration and death involved in vascular remodelling. 2 There is dual control of vascular tone by adenosine 5'-triphosphate (ATP) released from perivascular nerves and by ATP released from endothelial cells in response to changes in blood flow (shear stress) and hypoxia. 3 Both ATP and its breakdown product, adenosine, regulate smooth muscle and endothelial cell proliferation. 4 These regulatory mechanisms are important in pathological conditions, including hypertension, atherosclerosis, restenosis, diabetes and vascular pain.
    Autonomic &amp Autacoid Pharmacology 08/2009; 29(3):63-72.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Atherosclerosis is the major underlying pathologic cause of coronary artery disease. An early detection of the disease can prevent clinical sequellae such as angina, myocardial infarction, and stroke. The different imaging techniques employed to visualize the atherosclerotic plaque provide information of diagnostic and prognostic value. Furthermore, the use of contrast agents helps to improve signal-to-noise ratio providing better images. For nuclear imaging techniques and optical imaging these agents are absolutely necessary. We report on the different contrast agents that have been used, are used or may be used in future in animals, humans, or excised tissues for the distinct imaging modalities for atherosclerotic plaque imaging.
    Chemical Society Reviews 02/2014; · 24.89 Impact Factor

Full-text (2 Sources)

Available from
May 26, 2014