Synergistic action of transforming growth factor-beta and insulin-like growth factor-I induces expression of type II collagen and aggrecan genes in adult human articular chondrocytes.

Genzyme Tissue Repair, Framingham, Massachusetts 01701-9322, USA.
Experimental Cell Research (Impact Factor: 3.37). 01/1998; 237(2):318-25. DOI: 10.1006/excr.1997.3781
Source: PubMed

ABSTRACT Reexpression of aggrecan and type II collagen genes in dedifferentiated adult human articular chondrocytes (AHAC) in suspension culture varied widely depending on the specific lot of bovine serum used to supplement the culture medium. Some lots of serum provided strong induction of aggrecan and type II collagen expression by AHAC while others did not stimulate significant production of these hyaline cartilage extracellular matrix molecules even following several weeks in culture. Addition of 50 ng/ml insulin-like growth factor-I (IGF-I) to a deficient serum lot significantly enhanced its ability to induce aggrecan and type II collagen mRNA. Given this observation, IGF-I and other growth factors were tested in defined serum-free media for their effects on the expression of these genes. Neither IGF-I nor insulin nor transforming growth factor beta (TGF-beta) alone stimulated induction of aggrecan or type II collagen production by dedifferentiated AHAC. However, TGF-beta 1 or TGF-beta 2 combined with IGF-I or insulin provided a strong induction as demonstrated by RNase protection and immunohistochemical assays. Interestingly, type I collagen, previously shown to be downregulated in serum supplemented suspension cultures of articular chondrocytes, persisted for up to 12 weeks in AHAC cultured in defined medium supplemented with TGF-beta and IGF-I.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Incisional hernia affects up to 20% of patients after abdominal surgery. Unlike other types of hernia, its prognosis is poor, and patients suffer from recurrence within 10 years of the operation. Currently used hernia-repair meshes do not guarantee success, but only extend the recurrence-free period by about 5 years. Most of them are nonresorbable, and these implants can lead to many complications that are in some cases life-threatening. Electrospun nanofibers of various polymers have been used as tissue scaffolds and have been explored extensively in the last decade, due to their low cost and good biocompatibility. Their architecture mimics the natural extracellular matrix. We tested a biodegradable polyester poly-ε-caprolactone in the form of nanofibers as a scaffold for fascia healing in an abdominal closure-reinforcement model for prevention of incisional hernia formation. Both in vitro tests and an experiment on a rabbit model showed promising results.
    International Journal of Nanomedicine 01/2014; 9:3263-77. · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In adult healthy cartilage, chondrocytes are in a quiescent phase characterized by a fine balance between anabolic and catabolic activities. In ageing, degenerative joint diseases and traumatic injuries of cartilage, a loss of homeostatic conditions and an up-regulation of catabolic pathways occur. Since cartilage differentiation and maintenance of homeostasis are finely tuned by a complex network of signaling molecules and biophysical factors, shedding light on these mechanisms appears to be extremely relevant for both the identification of pathogenic key factors, as specific therapeutic targets, and the development of biological approaches for cartilage regeneration. This review will focus on the main signaling pathways that can activate cellular and molecular processes, regulating the functional behavior of cartilage in both physiological and pathological conditions. These networks may be relevant in the crosstalk among joint compartments and increased knowledge in this field may lead to the development of more effective strategies for inducing cartilage repair.
    International Journal of Molecular Sciences 05/2014; 15(5):8667-98. · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The existence of a link between estrogen deprivation and osteoarthritis (OA) in postmenopausal women suggests that 17β-estradiol (17β-E2) may be a modulator of cartilage homeostasis. Here, we demonstrate that 17β-E2 stimulates, via its receptor human estrogen receptor α 66 (hERα66), type II collagen expression in differentiated and dedifferentiated (reflecting the OA phenotype) articular chondrocytes. Transactivation of type II collagen gene (COL2A1) by ligand-independent transactivation domain (AF-1) of hERα66 was mediated by "GC" binding sites of the -266/-63-bp promoter, through physical interactions between ERα, Sp1/Sp3, Sox9, and p300, as demonstrated in chromatin immunoprecipitation (ChIP) and Re-Chromatin Immuno-Precipitation (Re-ChIP) assays in primary and dedifferentiated cells. 17β-E2 and hERα66 increased the DNA-binding activities of Sp1/Sp3 and Sox-9 to both COL2A1 promoter and enhancer regions. Besides, Sp1, Sp3, and Sox-9 small interfering RNAs (siRNAs) prevented hERα66-induced transactivation of COL2A1, suggesting that these factors and their respective cis-regions are required for hERα66-mediated COL2A1 up-regulation. Our results highlight the genomic pathway by which 17β-E2 and hERα66 modulate Sp1/Sp3 heteromer binding activity and simultaneously participate in the recruitment of the essential factors Sox-9 and p300 involved respectively in the chondrocyte-differentiated status and COL2A1 transcriptional activation. These novel findings could therefore be attractive for tissue engineering of cartilage in OA, by the fact that 17β-E2 could promote chondrocyte redifferentiation.
    Journal of Molecular Medicine 08/2014; · 4.74 Impact Factor