Article

A translational repression assay procedure (TRAP) for RNA-protein interactions in vivo.

European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 03/1998; 95(3):951-6. DOI: 10.1073/pnas.95.3.951
Source: PubMed

ABSTRACT RNA-protein interactions are central to many aspects of cellular metabolism, cell differentiation, and development as well as the replication of infectious pathogens. We have devised a versatile, broadly applicable in vivo system for the analysis of RNA-protein interactions in yeast. TRAP (translational repression assay procedure) is based on the translational repression of a reporter mRNA encoding green fluorescent protein by an RNA-binding protein for which a cognate binding site has been introduced into the 5' untranslated region. Because protein binding to the 5' untranslated region can sterically inhibit ribosome association, expression of the cognate binding protein causes significant reduction in the levels of green fluorescent protein fluorescence. By using RNA-protein interactions with affinities in the micromolar to nanomolar range, we demonstrate the specificity of TRAP as well as its ability to recover the cDNA encoding a specific RNA-binding protein, which has been diluted 500,000-fold with unrelated cDNAs, by using fluorescence-activated cell sorting. We suggest that TRAP offers a strategy to clone RNA-binding proteins for which little else than the binding site is known, to delineate RNA sequence requirements for protein binding as well as the protein domains required for RNA binding, and to study effectors of RNA-protein interactions in vivo.

0 Bookmarks
 · 
57 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: RNA-protein interaction plays a significant role in regulating eukaryotic translation. This phenomenon raises questions about the ability of artificial biological systems to take the advantage of protein-RNA interaction. Here, we designed an oncogenic signal-processing system expressing both a Renilla luciferase reporter gene controlled by RNA-protein interaction in its 5'-untranslated region (5'-UTR) and a Firefly luciferase normalization gene. To test the ability of the designed system, we then constructed vectors targeting the nuclear factor-κB (NF-κB) or the β-catenin signal. We found that the inhibition (%) of luciferase expression was correlated to the targeted protein content, allowing quantitative measurement of oncogenic signal intensity in cancer cells. The systems inhibited the expression of oncogenic signal downstream genes and induced bladder cancer cell proliferation inhibition and apoptosis without affecting normal urothelial cells. Compared to traditional methods (ELISA and quantitative immunoblotting), the bio-systems provided highly accurate, consistent, and reproducible quantification of protein signals and were able to discriminate between cancerous and non-cancerous cells. In conclusion, the synthetic systems function as both "signal counters" and "signal blockers" in cancer cells. This approach provides a synthetic biology platform for oncogenic signal measurement and cancer treatment.
    Molecular BioSystems 04/2013; · 3.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Artificial genetic switches have been designed and tuned individually in living cells. A method to directly invert an existing OFF switch to an ON switch should be highly convenient to construct complex circuits from well-characterized modules, but developing such a technique has remained a challenge. Here we present a cis-acting RNA module to invert the function of a synthetic translational OFF switch to an ON switch in mammalian cells. This inversion maintains the property of the parental switch in response to a particular input signal. In addition, we demonstrate simultaneous and specific expression control of both the OFF and ON switches. The module fits the criteria of universality and expands the versatility of mRNA-based information processing systems developed for artificially controlling mammalian cellular behaviour.
    Nature Communications 09/2013; 4:2393. · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic devices that directly detect and respond to intracellular concentrations of proteins are important synthetic biology tools, supporting the design of biological systems that target, respond to or alter specific cellular states. Here, we develop ribozyme-based devices that respond to protein ligands in two eukaryotic hosts, yeast and mammalian cells, to regulate the expression of a gene of interest. Our devices allow for both gene-ON and gene-OFF response upon sensing the protein ligand. As part of our design process, we describe an in vitro characterization pipeline for prescreening device designs to identify promising candidates for in vivo testing. The in vivo gene-regulatory activities in the two types of eukaryotic cells correlate with in vitro cleavage activities determined at different physiologically relevant magnesium concentrations. Finally, localization studies with the ligand demonstrate that ribozyme switches respond to ligands present in the nucleus and/or cytoplasm, providing new insight into their mechanism of action. By extending the sensing capabilities of this important class of gene-regulatory device, our work supports the implementation of ribozyme-based devices in applications requiring the detection of protein biomarkers.
    Nucleic Acids Research 10/2014; · 8.81 Impact Factor

Full-text (2 Sources)

Download
21 Downloads
Available from
May 20, 2014