Article

Gait analysis during treadmill and overground locomotion in children and adults.

Department of Physiology, Christian-Albrechts-Universität zu Kiel, Germany.
Electroencephalography and Clinical Neurophysiology 01/1998; 105(6):490-7. DOI: 10.1016/S0924-980X(97)00055-6
Source: PubMed

ABSTRACT Gait analysis on the treadmill and in the overground condition is used both in scientific approaches for investigating the neuronal organisation and ontogenetic development of locomotion and in a variety of clinical applications. We investigated the differences between overground and treadmill locomotion (at identical gait velocity) in 12 adults and 14 children (6-7 years old). During treadmill locomotion the step frequency increased by 7% in adults and 10% in children compared to overground walking, whereas the stride length and the stance phase of the walking cycle decreased. The swing phase, however, increased significantly by 5% in adults and remained unchanged in children. Balance-related gait parameters such as the step width and foot rotation angles increased during treadmill locomotion. The reduction of the step length was found to be stable after 10 min of treadmill walking in most subjects. With regard to the shifted phases of the walking cycle and the changed balance related gait parameters in the treadmill condition, we assume a different modulation of the central pattern generator in treadmill walking, due to a changed afferent input. Regarding the pronounced differences between overground and treadmill walking in children, it is discussed whether the systems generating and integrating different modulations of locomotion into a stable movement pattern have reached full capacity in 6-7 year old children.

0 Bookmarks
 · 
71 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An inexpensive method of generating continuous data on hind limb function in dogs with spinal cord injury is needed to facilitate multicentre clinical trials. This study aimed to define normal fore limb, hind limb coordination in dogs walking on a treadmill and then to determine whether reliable data could be generated on the frequency of hind limb stepping and the frequency of coordinated stepping in dogs with a wide range of severities of thoracolumbar spinal cord injury. Sixty-nine neurologically normal dogs of different body sizes including seven lame dogs were videotaped walking on the treadmill without prior training and all used the lateral gait of right fore, left hind, left fore, right hind (RF-LH-LF-RH). Severely paraparetic dogs were able to walk on the treadmill for a minimum of 75 seconds, scoring of which generated data representative of function in animals with extremely variable gaits. Fifty consecutive stepping cycles were scored by three observers in 18 dogs with a wide range of disability due to acute thoracolumbar spinal cord injury using a stepping score (hind limb steps/fore limb steps x100), and a coordination score (coordinated hind limb steps/total hind limb steps x100). Dogs were also scored using a previously validated ordinal open field score (OFS). Inter- and intraobserver agreement was high as assessed with Cronbach's alpha test for internal reliability. The stepping and coordination scores were significantly correlated to each other and to the OFS. Dogs with naturally occurring spinal cord injury can walk on a treadmill without prior training and their hind limb function can be scored reliably using a stepping score and coordination score. The only requirements for data acquisition are a treadmill and appropriately positioned video camera and so the system can be used in multicentre clinical trials to generate continuous data on neurologic recovery in dogs.
    BMC Veterinary Research 03/2014; 10(1):58. · 1.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Differences in gait between overground and treadmill walking are suggested to result from imposed treadmill speed and lack of visual flow. To counteract this effect, feedback-controlled treadmills that allow the subject to control the belt speed along with an immersive virtual reality (VR) have recently been developed. We studied the effect of adding a VR during both fixed speed (FS) and self-paced (SP) treadmill walking. Nineteen subjects walked on a dual-belt instrumented treadmill with a simple endless road projected on a 180° circular screen. A main effect of VR was found for hip flexion offset, peak hip extension, peak knee extension moment, knee flexion moment gain and ankle power during push off. A consistent interaction effect between VR and treadmill mode was found for 12 out of 30 parameters, although the differences were small and did not exceed 50% of the within subject stride variance. At FS, the VR seemed to slightly improve the walking pattern towards overground walking, with for example a 6.5mm increase in stride length. At SP, gait became slightly more cautious by adding a VR, with a 9.1mm decrease in stride length. Irrespective of treadmill mode, subjects rated walking with the VR as more similar to overground walking. In the context of clinical gait analysis, the effects of VR are too small to be relevant and are outweighed by the gains of adding a VR, such as a more stimulating experience and possibility of augmenting it by real-time feedback.
    Gait & posture 12/2013; · 2.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gait performance exhibits patterns within the stride-to-stride variability that can be indexed using detrended fluctuation analysis (DFA). Previous work employing DFA has shown that gait patterns can be influenced by constraints, such as natural aging or disease, and they are informative regarding a person's functional ability. Many activities of daily living require concurrent performance in the cognitive and gait domains; specifically working memory is commonly engaged while walking, which is considered dual-tasking. It is unknown if taxing working memory while walking influences gait performance as assessed by DFA. This study used a dual-tasking paradigm to determine if performance decrements are observed in gait or working memory when performed concurrently. Healthy young participants (N = 16) performed a working memory task (automated operation span task) and a gait task (walking at a self-selected speed on a treadmill) in single- and dual-task conditions. A second dual-task condition (reading while walking) was included to control for visual attention, but also introduced a task that taxed working memory over the long term. All trials involving gait lasted at least 10 min. Performance in the working memory task was indexed using five dependent variables (absolute score, partial score, speed error, accuracy error, and math error), while gait performance was indexed by quantifying the mean, standard deviation, and DFA α of the stride interval time series. Two multivariate analyses of variance (one for gait and one for working memory) were used to examine performance in the single- and dual-task conditions. No differences were observed in any of the gait or working memory dependent variables as a function of task condition. The results suggest the locomotor system is adaptive enough to complete a working memory task without compromising gait performance when walking at a self-selected pace.
    Experimental Brain Research 11/2013; · 2.22 Impact Factor