Article

Distribution of dopamine transporters in basal ganglia of cerebellar ataxic mice by [125I]RTI-121 quantitative autoradiography.

Département de Physiologie, Faculté de Médecine, Université de Montréal, Québec, Canada.
Neurochemistry International (Impact Factor: 2.66). 02/1998; 32(1):61-8. DOI:10.1016/S0197-0186(97)00042-9
Source: PubMed

ABSTRACT Dopamine (DA) uptake sites, or transporters, were examined with [125I]RTI-121 in mutant mice that exhibit motor control deficits, namely weaver, lurcher and dystonia musculorum. In lurcher mice, the distribution of [125I]RTI-121 binding was similar to controls, except for a decrease in the subthalamic nucleus. For dystonia musculorum mice, the labelling presented no differences between controls and mutants, except for decreases in the dorsal half of caudal neostriatum and in the ventral tegmental area. Moreover, in this mutant the left rostral neostriatum DA transporters were reduced, when compared to the right counterpart. In weaver heterozygote (wv/+) mice, the distribution and density gradients of [125I]RTI-121 labelling were similar as in their controls, except in caudal neostriatum, where binding was slightly higher. In contrast, the weaver homozygote (wv/wv) showed important decreases in labelling of the dorsal quadrant of rostral neostriatum as well as of the dorsal half of caudal neostriatum, where the reductions of binding densities were of 65% to 70%, respectively. There were also slight decreases in [125I]RTI-121 binding in olfactory tubercles as well as in subthalamic nucleus, but only in wv/wv mice. In substantia nigra pars compacta and ventral tegmental area of wv/wv mice the labelling was lower; however, while the 60% decrease in labelling in substantia nigra was highly significant, the 30% reduction in ventral tegmental area did not attain statistical significance. In summary, in the ataxic neurological mutant mice studied, important reductions of DA transporters were documented only for the weaver mice, the cerebellar mutant presenting, besides its cerebellar pathology, a known degeneration of mesencephalic dopaminergic neurons. The results rule out major alterations of the central DA systems in lurcher and dystonia musculorum, and are compatible with the hypothesis that the dopaminergic abnormalities of weaver mutants are not secondary to cerebellar atrophy, but may be a direct consequence of the abnormal weaver gene expressed by DA neurons leading to their apoptotic death.

0 0
 · 
0 Bookmarks
 · 
28 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The long-term consequences of chronic manganese (Mn) exposure on neurological health is a topic of great concern to occupationally-exposed workers and in populations exposed to moderate levels of Mn. We have performed a comprehensive assessment of Mn effects on dopamine (DA) synapse markers using positron emission tomography (PET) in the non-human primate brain. Young male Cynomolgus macaques were given weekly i.v. injections of 3.3-5.0 mg Mn/kg (n = 4), 5.0-6.7 mg Mn/kg (n = 5), or 8.3-10.0 mg Mn/kg (n = 3) for 7-59 weeks and received PET studies of various DA synapse markers before (baseline) and at one or two time points during the course of Mn exposure. We report that amphetamine-induced DA release measured by PET is markedly impaired in the striatum of Mn-exposed animals. The effect of Mn on DA release was present in the absence of changes in markers of dopamine terminal integrity determined in post-mortem brain tissue from the same animals. These findings provide compelling evidence that the effects of Mn on DA synapses in the striatum are mediated by inhibition of DA neurotransmission and are responsible for the motor deficits documented in these animals.
    Journal of Neurochemistry 10/2008; 107(5):1236-47. · 3.97 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Imaging, clinical, and pre-clinical studies have provided ample evidence for a cerebellar involvement in cognitive brain function including cognitive brain disorders, such as autism and schizophrenia. We previously reported that cerebellar activity modulates dopamine release in the mouse medial prefrontal cortex (mPFC) via two distinct pathways: (1) cerebellum to mPFC via dopaminergic projections from the ventral tegmental area (VTA) and (2) cerebellum to mPFC via glutamatergic projections from the mediodorsal and ventrolateral thalamus (ThN md and vl). The present study compared functional adaptations of cerebello-cortical circuitry following developmental cerebellar pathology in a mouse model of developmental loss of Purkinje cells (Lurcher) and a mouse model of fragile X syndrome (Fmr1 KO mice). Fixed potential amperometry was used to measure mPFC dopamine release in response to cerebellar electrical stimulation. Mutant mice of both strains showed an attenuation in cerebellar-evoked mPFC dopamine release compared to respective wildtype mice. This was accompanied by a functional reorganization of the VTA and thalamic pathways mediating cerebellar modulation of mPFC dopamine release. Inactivation of the VTA pathway by intra-VTA lidocaine or kynurenate infusions decreased dopamine release by 50 % in wildtype and 20-30 % in mutant mice of both strains. Intra-ThN vl infusions of either drug decreased dopamine release by 15 % in wildtype and 40 % in mutant mice of both strains, while dopamine release remained relatively unchanged following intra-ThN md drug infusions. These results indicate a shift in strength towards the thalamic vl projection, away from the VTA. Thus, cerebellar neuropathologies associated with autism spectrum disorders may cause a reduction in cerebellar modulation of mPFC dopamine release that is related to a reorganization of the mediating neuronal pathways.
    The Cerebellum 02/2013; · 2.60 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: 5-APB, commonly marketed as 'benzofury' is a new psychoactive substance and erstwhile 'legal high' which has been implicated in 10 recent drug-related deaths in the UK. This drug was available on the internet and in 'head shops' and was one of the most commonly sold legal highs up until its recent UK temporary ban (UK Home Office). Despite its prominence, very little is known about its pharmacology. This study was undertaken to examine the pharmacology of 5-APB in vitro. We hypothesized that 5-APB would activate the dopamine and 5-HT systems which may underlie its putative stimulant and hallucinogenic effects. Autoradiographic studies showed that 5-APB displaced both [(125)I]RTI-121 and [(3)H]ketanserin from rat brain tissue suggesting affinity at the dopamine transporter and 5-HT2 receptor sites respectively. Voltammetric studies in rat accumbens brain slices revealed that 5-APB slowed dopamine reuptake, and at high concentrations caused reverse transport of dopamine. 5-APB also caused vasoconstriction of rat aorta, an effect antagonized by the 5-HT2A receptor antagonist ketanserin, and caused contraction of rat stomach fundus, which was reversed by the 5-HT2B receptor antagonist RS-127445. These data show that 5-APB interacts with the dopamine transporter and is an agonist at the 5-HT2A and 5-HT2B receptors in the rat. Thus 5-APB's pharmacology is consistent with it having both stimulant and hallucinogenic properties. In addition, 5-APB's activity at the 5-HT2B receptor may cause cardiotoxicity.
    Progress in Neuro-Psychopharmacology and Biological Psychiatry 09/2013; · 3.55 Impact Factor