Expression of the CB1 and CB2 receptor messenger RNAs during embryonic development in the rat.

National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
Neuroscience (Impact Factor: 3.12). 03/1998; 82(4):1131-49. DOI: 10.1016/S0306-4522(97)00348-5
Source: PubMed

ABSTRACT We mapped the distribution of CB1 and CB2 receptor messenger RNAs in the developing rat to gain insight into how cannabinoids may affect embryogenesis. In situ hybridization histochemistry studies were done using riboprobes specific for CB1 or CB2 receptor messenger RNAs. We found that CB1 and CB2 receptor messenger RNAs are expressed in the placental cone and in the smooth muscle of the maternal uterus at the earliest gestational periods studied [from eight days of gestation (E8) through E12]. In the embryo, as early as E11, CB1 receptor messenger RNA is expressed in some cells of the neural tube and, at later embryological stages (from E15 to E21), in several distinct structures within the central nervous system. In addition, high levels of CB1 receptor messenger RNA were also found in areas of the peripheral nervous system such as the sympathetic and parasympathetic ganglia, in the retina and in the enteric ganglia of the gastrointestinal tract. In addition to neural structures, high levels of the CB1 receptor messenger RNA were also present in two endocrine organs, the thyroid gland and the adrenal gland. On the other hand, CB2 receptor messenger RNA is expressed exclusively in the liver of the embryo as early as E13. The region-specific expression of CB1 and CB2 receptor messenger RNAs suggests that these receptors have a functional role during embryogenesis.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Cannabinoid CB1 receptor (CB1R) signaling system is extensively distributed in the vertebrate retina. Activation of CB1Rs regulates a variety of functions of retinal neurons through modulating different ion channels. In the present work we studied effects of this receptor signaling on K(+) channels in retinal ganglion cells by patch-clamp techniques. The CB1R agonist WIN 55212-2 (WIN) suppressed outward K(+) currents in acutely isolated rat retinal ganglion cells in a dose-dependent manner, with an IC50 of 4.7 μM. We further showed that WIN mainly suppressed the tetraethylammonium (TEA)-sensitive K(+) current component. Whilst CB1Rs were expressed in rat retinal ganglion cells, the WIN effect on K(+) currents was not blocked by either AM251/SR141716, specific CB1R antagonists, or AM630, a selective CB2R antagonist. Consistently, cAMP-protein kinase A (PKA) and mitogen-activated protein kinase (MAPK)/ extracellular signal-regulated kinase (ERK) signaling pathways were unlikely involved in the WIN-induced suppression of the K(+) currents because both PKA inhibitors H-89/Rp-cAMP and MAPK/ERK1/2 inhibitor U0126 failed to block the WIN effects. WIN-induced suppression of the K(+) currents was not observed when WIN was intracellularly applied. Furthermore, an endogenous ligand of cannabinoid receptor anandamide (AEA), the specific CB1R agonist ACEA and the selective CB2R agonist CB65 also suppressed the K(+) currents, and the effects were not blocked by AM251/SR141716 or AM630 respectively. All these results suggest that the WIN-induced suppression of the outward K(+) currents in rat retinal ganglion cells, thereby regulating the cell excitability, were not through CB1R/CB2R signaling pathways.
    Neuroscience 09/2013; · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study was undertaken to investigate the relative contribution of cannabinoid receptors (CBRs) subtypes and to analyze cannabimimetic mechanisms involved on the inhibition of AEA and 2-AG degradation on the antihyperalgesic effect of ankle joint mobilization (AJM). Mice (25-35g) were subjected to plantar incision (PI) and 24 hours after surgery animals received the following treatments, AJM for 9 minutes, anandamide (10 mg/kg, intraperitoneal [i.p.]), WIN 55,212-2 (1.5 mg/kg, i.p.), URB937 (0.01-1 mg/kg, i.p.; a fatty acid amide hydrolase [FAAH] inhibitor) or JZL184 (0.016-16 mg/kg, i.p.; a monoacylglycerol lipase [MAGL] inhibitor). Withdrawal frequency to mechanical stimuli was assessed 24 hours after PI and at different time intervals after treatments. Receptor specificity was investigated using selective CB1R (AM281) and CB2R (AM630) antagonists. In addition, the effect of the FAAH and MAGL inhibitors on the antihyperalgesic action of AJM was investigated. AJM, anandamide, WIN 55,212-2, URB937 and JZL184 decreased mechanical hyperalgesia induced by PI. The antihyperalgesic effect of AJM was reversed by pretreatment with AM281 given by intraperitoneal and intrathecal routes, but not intraplantarly. Additionally, intraperitoneal and intraplantar, but not intrathecal administration of AM630 blocked AJM-induced antihyperalgesia. Interestingly, in mice pretreated with FAAH or the MAGL inhibitor the antihyperalgesic effect of AJM was significantly longer. This article presents data addressing the cannabinoid receptor mechanisms underlying the antihyperalgesic activity of joint mobilization as well as of the endocannabinoid catabolic enzyme inhibitors in the mouse postoperative pain model. Joint mobilization and these enzymes offer potential targets to treat postoperative pain.
    Neuroscience 10/2013; · 3.12 Impact Factor
  • Source
    Dataset: 1486.full-1