Correlation of dynamic contrast-enhanced magnetic resonance imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media.

Department of Radiology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0628, USA.
Pediatric Radiology (Impact Factor: 1.65). 02/1998; 28(2):67-78. DOI: 10.1007/s002470050296
Source: PubMed

ABSTRACT The endothelial integrity of microvessels is disrupted in malignant tumors. Quantitative assays of tumor microvascular characteristics based on dynamic magnetic resonance imaging (MRI) were correlated with histopathologic grade in mammary soft tissue tumors.
A spectrum of tumors, benign through highly malignant, was induced in 33 female rats by administration of N -ethyl-N -nitrosourea (ENU), a potent carcinogen. Dynamic contrast-enhanced MRI was performed using a small-molecular contrast medium [gadopentetate, MW = 0.5 kDa] and a macromolecular contrast medium [albumin-(Gd-DTPA)30, MW = 92 kDa] at an interval of 1-2 days. Permeability surface area product (PS), as estimated by the corresponding endothelial transfer coefficient (KPS), and fractional plasma volume (fPV) were calculated for each tumor and each contrast agent using a two-compartment bi-directional kinetic model. MRI microvascular characteristics were correlated with histopathologic tumor grade.
Tumor permeability to macromolecular contrast medium, characterized by KPS, showed a highly positive correlation with tumor grade (r 2 = 0.76, P < 10(-10)). KPS values were zero for all benign and some low-grade carcinomas, greater than zero in all other carcinomas, and increased in magnitude with higher tumor grade. A considerably smaller but significantly positive correlation was found between fPV and tumor grade using macromolecular contrast medium (r 2 = 0.25, P < 0.003). No correlation between KPS or fPV values and tumor grade was found using gadopentetate (r 2 = 0.01, P > 0.95 and r2 = 0.03, P > 0.15, respectively).
Quantitative tumor microvascular permeability assays generated with macromolecular MRI contrast medium correlate closely with histologic tumor grade. No significant correlation is found using small-molecular gadopentetate.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Advances in the treatment of pediatric abdominopelvic malignancies have increased survival drastically. Imaging is critical in initial tumor characterization/staging, assessment of treatment response, and surveillance following therapy. Magnetic resonance imaging (MRI) is playing an increasing role in the care of these patients due to its lack of ionizing radiation, superior contrast resolution and the ability to characterize tumors based on tissue characteristics (e.g., T1 and T2 relaxation times). Modern MR techniques also allow for assessment of tumors based on functional characteristics. This article is focused on emerging MRI technologies and potential applications in the imaging of pediatric abdominopelvic malignancies.
    Magnetic resonance imaging clinics of North America 11/2013; 21(4):829-41.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dynamic MR biomarkers (T2*-weighted or susceptibility-based and T1-weighted or relaxivity-enhanced) have been applied to assess tumor perfusion and its response to therapies. A significant challenge in the development of reliable biomarkers is a rigorous assessment and optimization of reproducibility. The purpose of this study was to determine the measurement reproducibility of T1-weighted dynamic contrast-enhanced (DCE)-MRI and T2*-weighted dynamic susceptibility contrast (DSC)-MRI with two contrast agents (CA) of different molecular weight (MW): gadopentetate (Gd-DTPA, 0.5 kDa) and Gadomelitol (P792, 6.5 kDa). Each contrast agent was tested with eight mice that had subcutaneous MDA-MB-231 breast xenograft tumors. Each mouse was imaged with a combined DSC-DCE protocol three times within one week to achieve measures of reproducibility. DSC-MRI results were evaluated with a contrast to noise ratio (CNR) efficiency threshold. There was a clear signal drop (>95% probability threshold) in the DSC of normal tissue, while signal changes were minimal or non-existent (<95% probability threshold) in tumors. Mean within-subject coefficient of variation (wCV) of relative blood volume (rBV) in normal tissue was 11.78% for Gd-DTPA and 6.64% for P792. The intra-class correlation coefficient (ICC) of rBV in normal tissue was 0.940 for Gd-DTPA and 0.978 for P792. The inter-subject correlation coefficient was 0.092. Calculated K(trans) from DCE-MRI showed comparable reproducibility (mean wCV, 5.13% for Gd-DTPA, 8.06% for P792). ICC of K(trans) showed high intra-subject reproducibility (ICC = 0.999/0.995) and inter-subject heterogeneity (ICC = 0.774). Histograms of K(trans) distributions for three measurements had high degrees of overlap (sum of difference of the normalized histograms <0.01). These results represent homogeneous intra-subject measurement and heterogeneous inter-subject character of biological population, suggesting that perfusion MRI could be an imaging biomarker to monitor or predict response of disease.
    PLoS ONE 02/2014; 9(2):e89797. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: L’imagerie de microcirculation des cancers du sein repose sur l’étude du rehaussement tissulaire après injection de produit de contraste. Les vitesses de rehaussement servent à déduire la perfusion et la perméabilité. L’amplitude des rehaussements reflète les volumes sanguins et interstitiels. Cette technique a bénéficié des progrès de l’IRM qui permettent l’acquisition de grands volumes, avec un bon compromis entre résolutions temporelle et spatiale. Les logiciels ont également évolué, permettant de calculer des cartographies de la microcirculation et d’en analyser l’hétérogénéité. L’imagerie de la microcirculation renforce le caractère suspect et agressif d’une lésion, devant une augmentation de la perméabilité et une chute du volume interstitiel ; elle permet l’évaluation précoce des traitements néoadjuvants, en montrant la normalisation des paramètres fonctionnels qui précède les modifications morphologiques.
    Journal de Radiologie Diagnostique et Interventionnelle. 12/2013;

Full-text (2 Sources)

Available from
Jul 3, 2014