Conformational stability of muscle acylphosphatase: the role of temperature, denaturant concentration, and pH.

Oxford Centre for Molecular Sciences, New Chemistry Laboratory, University of Oxford, U.K.
Biochemistry (Impact Factor: 3.38). 03/1998; 37(5):1447-55. DOI: 10.1021/bi971692f
Source: PubMed

ABSTRACT The conformational stability (delta G) of muscle acylphosphatase, a small alpha/beta globular protein, has been determined as a function of temperature, urea concentration, and pH. A combination of thermally induced and urea-induced unfolding, monitored by far-UV circular dichroism, was used to define the conformational stability over a wide range of temperature. Through analysis of all these data, the heat capacity change upon unfolding (delta Cp) could be estimated, allowing the determination of the temperature dependence of the main thermodynamic functions (delta G, delta H, delta S). Thermal unfolding in the presence of urea made it possible to extend such thermodynamic analysis to examine these parameters as a function of urea concentration. The results indicate that acylphosphatase is a relatively unstable protein with a delta G(H2O) of 22 +/- 1 kJ mol-1 at pH 7 and 25 degrees C. The midpoints of both thermal and chemical denaturation are also relatively low. Urea denaturation curves over the pH range 2-12 have allowed the pH dependence of delta G to be determined and indicate that the maximum stability of the protein occurs near pH 5.5. While the dependence of delta G on urea (the m value) does not vary with temperature, a significant increase has been found at low pH values, suggesting that the overall dimensions of the unfolded state are significantly affected by the number of charges within the polypeptide chain. The comparison of these data with those from other small proteins indicates that the pattern of conformational stability is defined by individual sequences and not by the overall structural fold.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Chemical and thermal denaturation methods have been widely used to investigate folding processes of proteins in vitro. However, a molecular understanding of the relationship between these two perturbation methods is lacking. Here, we combined computational and experimental approaches to investigate denaturing effects on three structurally different proteins. We derived a linear relationship between thermal denaturation at temperature T(b) and chemical denaturation at another temperature T(u) using the stability change of a protein (ΔG). For this, we related the dependence of ΔG on temperature, in the Gibbs-Helmholtz equation, to that of ΔG on urea concentration in the linear extrapolation method, assuming that there is a temperature pair from the urea (T(u)) and the aqueous (T(b)) ensembles that produces the same protein structures. We tested this relationship on apoazurin, cytochrome c, and apoflavodoxin using coarse-grained molecular simulations. We found a linear correlation between the temperature for a particular structural ensemble in the absence of urea, T(b), and the temperature of the same structural ensemble at a specific urea concentration, T(u). The in silico results agreed with in vitro far-UV circular dichroism data on apoazurin and cytochrome c. We conclude that chemical and thermal unfolding processes correlate in terms of thermodynamics and structural ensembles at most conditions; however, deviations were found at high concentrations of denaturant.
    The Journal of Chemical Physics 11/2011; 135(17):175102. · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein structure is composed of regular secondary structural elements (α-helix and β-strand) and non-regular region. Unlike the helix and strand, the non-regular region consists of an amino acid defined as a disordered residue (DR). When compared with the effect of the helix and strand, the effect of the DR on enzyme structure and function is elusive. An Aspergillus niger GH10 xylanase (Xyn) was selected as a model molecule of (β/α)(8) because the general structure consists of ~10% enzymes. The Xyn has five N-terminal DRs and one C-terminal DR, respectively, which were deleted to construct three mutants, XynΔN, XynΔC, and XynΔNC. Each mutant was ~2-, 3-, or 4-fold more thermostable and 7-, 4-, or 4-fold more active than the Xyn. The N-terminal deletion decreased the xylanase temperature optimum for activity (T(opt)) 6 °C, but the C-terminal deletion increased its T(opt) 6 °C. The N- and C-terminal deletions had opposing effects on the enzyme T(opt) but had additive effects on its thermostability. The five N-terminal DR deletions had more effect on the enzyme kinetics but less effect on its thermo property than the one C-terminal DR deletion. CD data showed that the terminal DR deletions increased regular secondary structural contents, and hence, led to slow decreased Gibbs free energy changes (ΔG(0)) in the thermal denaturation process, which ultimately enhanced enzyme thermostabilities.
    Journal of Biological Chemistry 11/2011; 286(52):44710-5. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Entropic stabilization of native protein structures typically relies on strategies that serve to decrease the entropy of the unfolded state. Here we report, using a combination of experimental and computational approaches, on enhanced thermodynamic stability conferred by an increase in the configurational entropy of the folded state. The enhanced stability is observed upon modifications of a loop region in the enzyme acylphosphatase and is achieved despite significant enthalpy losses. The modifications that lead to increased stability, as well as those that result in destabilization, however, strongly compromise enzymatic activity, rationalizing the preservation of the native loop structure even though it does not provide the protein with maximal stability or kinetic foldability.
    Proceedings of the National Academy of Sciences 06/2013; · 9.81 Impact Factor