Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials.

Section for Radiation Biology, Finsen Centre, Rigshospitalet, Copenhagen, Denmark.
Annals of Oncology (Impact Factor: 6.58). 01/1998; 8(12):1197-206.
Source: PubMed

ABSTRACT The epidermal growth factor receptor (EGFR) is a growth factor receptor that induces cell differentiation and proliferation upon activation through the binding of one of its ligands. The receptor is located at the cell surface, where the binding of a ligand activates a tyrosine kinase in the intracellular region of the receptor. This tyrosine kinase phosphorylates a number of intracellular substrates that activates pathways leading to cell growth, DNA synthesis and the expression of oncogenes such as fos and jun. EGFR is thought to be involved the development of cancer, as the EGFR gene is often amplified, and/or mutated in cancer cells. In this review we will focus on: (I) the structure and function of EGFR, (II) implications of receptor/ligand coexpression and EGFR mutations or overexpression, (III) its effect on cancer cells, (IV) the development of the malignant phenotype and (V) the clinical aspects of therapeutic targeting of EGFR.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Absolute quantification of protein expression and posttranslational modifications by mass spectrometry has been challenging due to a variety of factors, including the potentially large dynamic range of phosphorylation response. To address these issues, we have developed MARQUIS-Multiplex Absolute Regressed Quantification with Internal Standards-a novel mass spectrometry-based approach using a combination of isobaric tags and heavy-labelled standard peptides, to construct internal standard curves for peptides derived from key nodes in signal transduction networks. We applied MARQUIS to quantify phosphorylation dynamics within the EGFR network at multiple time points following stimulation with several ligands, enabling a quantitative comparison of EGFR phosphorylation sites and demonstrating that receptor phosphorylation is qualitatively similar but quantitatively distinct for each EGFR ligand tested. MARQUIS was also applied to quantify the effect of EGFR kinase inhibition on glioblastoma patient-derived xenografts. MARQUIS is a versatile method, broadly applicable and extendable to multiple mass spectrometric platforms.
    Nature Communications 01/2015; 6:5924. · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract EGFR tyrosine kinase has been reported mainly in 40-80% of non-small lung cancers, in addition to colon and breast cancers. In this study, we illustrate the synthesis of a highly potent antitumor agent. The synthesized compound 4 was screened at NCI, USA, for antitumor activity against non-small lung cancer, colon cancer and breast cancer cell lines. Results indicated that this compound is more potent antitumor agent compared to erlotinib against all tested cell lines except breast cancer (MDA-MB-468) cell line. In addition, it was tested initially at a single dose concentration of 100 µM over 11 different kinases. At this concentration, 94.45% inhibition of the enzymatic activity of EGFR kinase was observed, while the inhibition in activity was below 55% in all other kinases. Compound 4 was further tested in a 10-dose IC50 mode and showed IC50 value of 0.239 µM for EGFR kinase. In vivo acute toxicity of this compound was also tested.
    Journal of Enzyme Inhibition and Medicinal Chemistry 03/2014; · 1.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Preclinical studies demonstrate that epidermal growth factor receptor (EGFR) signals through both kinase-dependent and independent pathways and that combining a small-molecule EGFR inhibitor, EGFR antibody, and/or anti-angiogenic agent is synergistic. We conducted a dose-escalation, phase I study combining erlotinib, cetuximab, and bevacizumab. The subset of patients with metastatic colorectal cancer was analyzed for safety and antitumor activity. Forty-one patients with heavily pretreated metastatic colorectal cancer received treatment on a range of dose levels. The most common treatment-related grade ≥2 adverse events were rash (68%), hypomagnesemia (37%), and fatigue (15%). Thirty of 34 patients (88%) treated at the full FDA-approved doses of all three drugs tolerated treatment without drug-related dose-limiting effects. Eleven patients (27%) achieved stable disease (SD) ≥6 months and three (7%) achieved a partial response (PR) (total SD>6 months/PR= 14 (34%)). Of the 14 patients with SD≥6 months/PR, eight (57%) had received prior sequential bevacizumab and cetuximab, two (5%) had received bevacizumab and cetuximab concurrently, and four (29%) had received prior bevacizumab but not cetuximab or erlotinib (though three had received prior panitumumab). The combination of bevacizumab, cetuximab, and erlotinib was well tolerated and demonstrated antitumor activity in heavily pretreated patients with metastatic colorectal cancer.
    Oncoscience. 01/2014; 1(8):540-9.

Full-text (2 Sources)

Available from
May 31, 2014