A proteolytic system that compensates for loss of proteasome function.

Center for Cancer Research, Department for Biology, Massachusetts Institute of Technology, Cambridge 02139-4307, USA.
Nature (Impact Factor: 42.35). 05/1998; 392(6676):618-22. DOI: 10.1038/33443
Source: PubMed

ABSTRACT Proteolysis is essential for the execution of many cellular functions. These include removal of incorrectly folded or damaged proteins, the activation of transcription factors, the ordered degradation of proteins involved in cell cycle control, and the generation of peptides destined for presentation by class I molecules of the major histocompatibility complex. A multisubunit protease complex, the proteasome, accomplishes these tasks. Here we show that in mammalian cells inactivation of the proteasome by covalent inhibitors allows the outgrowth of inhibitor-resistant cells. The growth of such adapted cells is apparently maintained by the induction of other proteolytic systems that compensate for the loss of proteasomal activity.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Tumors frequently display defects in the MHC-I antigen processing machinery, such as deficiency of the peptide transporter TAP. Interestingly, the residual peptide repertoire contains neo-antigens which are not presented by processing-proficient cells. We termed these immunogenic peptides TEIPP ('T-cell epitopes associated with impaired peptide processing') and were interested to unravel their TAP-independent processing pathways. With an array of chemical inhibitors we assessed the participation of numerous proteases to TAP-independent peptides and found that the previously described catalytic enzymes signal peptidase and furin contributed in a cell-type and MHC-I allele-specific way. In addition, a dominant role for the proteasome and metallopeptidases was observed. These findings raised the question how these proteasome products get access to MHC-I molecules. A novel TEIPP peptide-epitope that represented this intracellular route revealed that the lysosomal peptide transporter ABCB9 ('TAP-like') was dispensable for its presentation. Interestingly, prevention of endolysosomal vesicle acidification by bafilomycin enhanced the surface display of this TEIPP peptide, suggesting that this proteasome-dependent pathway intersects endolysosomes and that these antigens are merely destroyed there. In conclusion, the proteasome has a surprisingly dominant role in shaping the TAP-independent MHC-I peptide repertoire and some of these antigens might be targeted to the endocytic vesicular pathway.
    Molecular Immunology 06/2014; 62(1):129-136. · 3.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Velcade is one of the inescapable drug to treat patient suffering from multiple myeloma (MM) and resistance to this drug represents a major drawback for patients. However, the mechanisms underlying velcade resistance remain incompletely understood. We derived several U266 MM cell clones that resist to velcade. U266-resistant cells were resistant to velcade-induced cell death but exhibited a similar sensitivity to various proapoptotic stimuli. Careful analysis of proteosomal subunits and proteasome enzymatic activities showed that neither the composition nor the activity of the proteasome was affected in velcade-resistant cells. Elimination of velcade-induced poly-ubiquitinated proteins and protein aggregates was drastically stimulated in the resistant cells and correlated with increased cell survival. Inhibition of the lysosomal activity in velcade-resistant cells resulted in an increase of cell aggregates and decrease survival, indicating that aggregates are eliminated through lysosomal degradation. In addition, pangenomic profiling of velcade-sensitive and resistant cells showed that the small heat shock protein HSPB8 was overexpressed in resistant cells. Finally, gain and loss of function experiment demonstrated that HSPB8 is a key factor for velcade resistance. In conclusion, HSPB8 plays an important role for the elimination of aggregates in velcade-resistant cells that contributes to their enhanced survival.
    Oncotarget 07/2014; · 6.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Protein metabolism is an innovative potential therapeutic target for AML. Proteotoxic stress (PS) sensitizes malignant cells for proteasome inhibitor treatment. Some HIV protease inhibitors (HIV-PI) induce PS and may therefore be combined with proteasome inhibitors to achieve PS-targeted therapy of AML. Methods We investigated the effects of all nine approved HIV-PI alone and in combination with proteasome inhibitors on AML cell lines and primary cells in vitro. Results Ritonavir induced cytotoxicity and PS at clinically achievable concentrations, and induced synergistic PS-triggered apoptosis with bortezomib. Saquinavir, nelfinavir and lopinavir were likewise cytotoxic against primary AML cells, triggered PS-induced apoptosis, inhibited AKT-phosphorylation and showed synergistic cytotoxicity with bortezomib and carfilzomib at low micromolar concentrations. Exclusively nelfinavir inhibited intracellular proteasome activity, including the β2 proteasome activity that is not targeted by bortezomib/carfilzomib. Conclusions Of the nine currently approved HIV-PI, ritonavir, saquinavir, nelfinavir and lopinavir can sensitize AML primary cells for proteasome inhibitor treatment at low micromolar concentrations and may therefore be tested clinically towards a proteotoxic stress targeted therapy of AML.
    Leukemia research 01/2013; · 2.36 Impact Factor


Available from
Feb 6, 2015