Localization of adrenomedullin-like immunoreactivity in the hypothalamo-hypophysial system of amphibians

Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain.
Neuroscience Letters (Impact Factor: 2.03). 03/1998; 242(1):13-6. DOI: 10.1016/S0304-3940(98)00033-0
Source: PubMed


The presence of adrenomedullin-like immunoreactive (AMi) cell bodies and fibers in the hypothalamus and hypophysis of the amphibians Rana perezi (anuran) and Pleurodeles waltl (urodele) was examined by immunohistochemistry. A large population of AMi neurons was found in the suprachiasmatic nucleus of both species. Differently, AMi cells in the magnocellular nucleus of the preoptic area were only found in the urodele, whereas dispersed cells in the caudal infundibular region were exclusively present in the anuran. This different staining pattern is reflected in the hypophysis where the neural lobe is primarily immunoreactive in the urodele while the labeling in the intermediate lobe prevailed in the anuran. The results strongly suggest that, as is mammals, the AM in amphibians may play an important regulatory role in the hypothalamo-hypophysial system.

2 Reads
  • Source
    • "To our knowledge, this constitutes the first reference of the two peptides in adenohypophysis, namely in endocrine cells, of non-mammalian vertebrates. The presence of AM immunopositive nerve fibers in the neural and intermediate lobes of amphibians previously reported (Gonz a alez et al., 1998; Mu~ n noz et al., 2001a; Mu~ n noz et al., 2001b) has also been confirmed. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Adrenomedullin (AM) and proadrenomedullin N-terminal 20 peptide (PAMP) are two multifunctional peptides processed from a common precursor which have been described in numerous mammalian organs, including the pituitary gland. Previous studies have found AM immunoreactivity in neurohypophysis nerve fibers of amphibian pituitary. In the present study, immunocytochemical and Western blot analysis in the pituitary gland of the amphibian Rana perezi demonstrated in the adenohypophysis both AM and PAMP. AM-like immunoreactivity was found in a moderate number of endocrine cells of the pars distalis. In the neurohypophysis, AM was observed not only in nerve fibers of pars nervosa and axonal projections innervating the pars intermedia, but also in the outer zone of the median eminence. PAMP staining was observed in numerous endocrine cells scattered all over the pars distalis and in some cells of the pars tuberalis, but not in the neurohypophysis. In order to compare the quantity of AM and PAMP immunoreactivity between pars distalis of female and male specimens, an image analysis study was done. Significant differences for AM immunoreactivity (p<0.001) between sexes was found, the males showing higher immunostained area percentage. Differences of PAMP immunoreactivity were not significant (p=0.599). Western blot analysis detected bands presumably corresponding to precursor and/or intermediate species in the propeptide processing.
    General and Comparative Endocrinology 09/2003; 133(1):50-60. DOI:10.1016/S0016-6480(03)00142-4 · 2.47 Impact Factor

  • Oral Surgery Oral Medicine Oral Pathology 07/1949; 2(6):760-2.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adrenomedullin is a peptide of marked vasodilator activity first isolated from human pheochromocytoma and subsequently demonstrated in other mammalian tissues. Using a polyclonal antiserum against human adrenomedullin-(22-52) amide and the avidin-biotin peroxidase complex technique, we have demonstrated by light and electron microscopy that adrenomedullin-like immunoreactivity is widely distributed in the rat central nervous system. Western blotting of extracts of different brain regions demonstrated the fully processed peptide as the major form in the cerebellum, whereas a 14-kDa molecular species and a small amount of the 18-kDa propeptide were present in other brain regions. Immunoreactive neurons and processes were found in multipolar neurons and pyramidal cells of layers IV-VI of the cerebral cortex and their apical processes, as well as in a large number of telencephalic, diencephalic, mesencephalic, pontine and medullary nuclei. Cerebellar Purkinje cells and mossy terminal nerve fibers as well as neurons of the cerebellar nuclei were immunostained, as were neurons in area 9 of the anterior horn of the spinal cord. Immunoreactivity was also found in some vascular endothelial cells and surrounding processes that probably originated from perivascular glial cells. Electron microscopy confirmed the light microscopy findings and showed the reaction product in relation to neurofilaments and the external membrane of small mitochondria. Immunoreactive terminal boutons were occasionally seen. The distribution of adrenomedullin-like immunoreactivity in the central nervous system suggests that it has a significant role in neuronal function as well as in the regulation of regional blood flow.
    Brain Research 02/2000; 853(2):245-68. DOI:10.1016/S0006-8993(99)02273-8 · 2.84 Impact Factor
Show more