Article

Myogenesis: A View from Drosophila

Memorial Sloan-Kettering Cancer Center, Sloan Kettering Division, Graduate School of Medical Sciences, Cornell University, New York, New York 10021, USA.
Cell (Impact Factor: 33.12). 07/1998; 93(6):921-7. DOI: 10.1016/S0092-8674(00)81198-8
Source: PubMed
0 Followers
 · 
99 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The creation of the contractile apparatus in muscle involves the co-activation of a group of genes encoding muscle-specific proteins and the production of high levels of protein in a short period of time. We have studied the transcriptional control of six Drosophila muscle genes that have similar expression profiles and we have compared these mechanisms with those employed to control the distinct expression profiles of other Drosophila genes. The regulatory elements controlling the transcription of co-expressed muscle genes share an Upstream Regulatory Element and an Intronic Regulatory Element. Moreover, similar clusters of MEF2 and CF2 binding sites are present in these elements. Here, we demonstrate that CF2 depletion alters the relative expression of thin and thick filament components. We propose that the appropriate rapid gene expression responses during muscle formation and the maintenance of each muscle type is guaranteed in Drosophila by equivalent duplicate enhancer-like elements. This mechanism may be exceptional and restricted to muscle genes, reflecting the specific requirement to mediate rapid muscle responses. However, it may also be a more general mechanism to control the correct levels of gene expression during development in each cell type.
    Mechanisms of development 08/2008; 125(7):617-30. DOI:10.1016/j.mod.2008.03.003 · 2.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the hot debate on arthropod relationships, Crustaceans and the morphology of their appendages play a pivotal role. To gain new insights into how arthropod appendages evolved, developmental biologists recently have begun to examine the expression and function of Drosophila appendage genes in Crustaceans. However, cellular aspects of Crustacean limb development such as myogenesis are poorly understood in Crustaceans so that the interpretative context in which to analyse gene functions is still fragmentary. The goal of the present project was to analyse muscle development in Crustacean appendages, and to that end, monoclonal antibodies against arthropod muscle proteins were generated. One of these antibodies recognises certain isoforms of myosin heavy chain and strongly binds to muscle precursor cells in malacostracan Crustacea. We used this antibody to study myogenesis in two isopods, Porcellio scaber and Idotea balthica (Crustacea, Malacostraca, Peracarida), by immunohistochemistry. In these animals, muscles in the limbs originate from single muscle precursor cells, which subsequently grow to form multinucleated muscle precursors. The pattern of primordial muscles in the thoracic limbs was mapped, and results compared to muscle development in other Crustaceans and in insects. Electronic supplementary material The online version of this article (doi:10.1007/s00427-008-0216-1) contains supplementary material, which is available to authorized users.
    Development Genes and Evolution 06/2008; 218(5):253-65. DOI:10.1007/s00427-008-0216-1 · 2.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To facilitate the genetic analysis of muscle assembly and maintenance, we have developed a method for efficient RNA interference (RNAi) in Drosophila primary cells using double-stranded RNAs (dsRNAs). First, using molecular markers, we confirm and extend the observation that myogenesis in primary cultures derived from Drosophila embryonic cells follows the same developmental course as that seen in vivo. Second, we apply this approach to analyze 28 Drosophila homologs of human muscle disease genes and find that 19 of them, when disrupted, lead to abnormal muscle phenotypes in primary culture. Third, from an RNAi screen of 1140 genes chosen at random, we identify 49 involved in late muscle differentiation. We validate our approach with the in vivo analyses of three genes. We find that Fermitin 1 and Fermitin 2, which are involved in integrin-containing adhesion structures, act in a partially redundant manner to maintain muscle integrity. In addition, we characterize CG2165, which encodes a plasma membrane Ca2+-ATPase, and show that it plays an important role in maintaining muscle integrity. Finally, we discuss how Drosophila primary cells can be manipulated to develop cell-based assays to model human diseases for RNAi and small-molecule screens.
    Development 05/2008; 135(8):1439-49. DOI:10.1242/dev.012849 · 6.27 Impact Factor