The gene 4 of rice yellow stunt rhabdovirus encodes the matrix protein.

Laboratory of Plant Biotechnology, Chinese Academy of Sciences, Beijing, P.R. China.
Virus Genes (Impact Factor: 1.84). 02/1998; 16(3):277-80. DOI: 10.1023/A:1008078605399
Source: PubMed

ABSTRACT The complete nucleotide sequence of the gene 4 of rice yellow stunt rhabdovirus (RYSV) was determined from cDNAs corresponding to the viral genomic RNA. Gene 4 is 913 nucleotides (nt) long, comprising a 17-nt untranslated 5' region, a 786-nt open reading frame encoding a polypeptide with a molecular mass of 29,125 Da, and a 110-nt untranslated 3' region. Western blot analysis of the RYSV proteins using the antiserum raised against the protein expressed from the cloned gene in Escherichia coli indicates that gene 4 encodes the M protein of RYSV. Comparisons of the deduced amino acid sequence of the M protein of RYSV with those of other rhabdoviruses revealed no significant homologies. However, it shared a similar basic property and a similar distribution of charges with the other rhabdovirus matrix proteins and showed a relatively closer relationship to the sonchus yellow net virus (SYNV) M1 protein.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The 3′ leader and the 5′ trailer of the rice yellow stunt rhabdovirus (RYSV) genomic RNA have been cloned and sequenced. Sequence data indicate that the RYSV leader region is composed of 203 nucleotides (nt) and the trailer region 191 nt. The terminal 9 nt of the two regions are complementary and capable of forming a putative panhandle structure common to rhabdovirus genomes. In comparison with the leader or trailer sequences of other rhabdoviruses reported so far, both the leader and trailer of RYSV are the longest and there is no obvious sequence homology between the counterparts except for a few terminal nt and the UGUU motif in the leader sequences. Polyadenylated plus-strand leader RNA has been detected in RYSV-infected rice plants by 3′ RACE. This is the second example in rhabdoviruses following the report for sonchus yellow net virus (SYNV) for existence of a polyadenylated leader RNA. No polyadenylated plus-strand transcripts of the RYSV trailer have been found using the similar method.
    Science in China Series C Life Sciences 01/1999; 42(1):50-56. · 1.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The P6 protein of Rice yellow stunt rhabdovirus (RYSV) is a virion structural protein that can be phosphorylated in vitro. However its exact function remains to be elusive. We found that P6 enhanced the virulence of Potato virus X (PVX) in Nicotiana benthamiana and N. tabacum plants, suggesting that it might function as a suppressor of RNA silencing. We examined the mechanism of P6-mediated silencing suppression by transiently expressing P6 in both N. benthamiana leaves and rice protoplasts. Our results showed that P6 could repress the production of secondary siRNAs and inhibit systemic GFP RNA silencing, but did not interfere with local RNA silencing in N. benthamiana plants or in rice protoplasts. Intriguingly, P6 and RDR6 had overlapping subcellular localization and P6 bound both rice and Arabidopsis RDR6 in vivo. Furthermore, transgenic rice plants expressing P6 showed enhanced susceptibility to infection by Rice stripe virus (RSV). Hence, we propose that P6 is part of the RYSV's counter-defense machinery against the plant RNA silencing system and plays a role mainly in affecting RDR6-mediated secondary siRNA synthesis. Our work provides a new perspective on how a plant-infecting nucleorhabdovirus may counteract host RNA silencing-mediated anti-viral defense.
    Molecular Plant-Microbe Interactions 05/2013; · 4.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rice transitory yellowing virus (RTYV), a member of the genus Nucleorhabdovirus, is closely related to or synonymous with rice yellow stunt virus (RYSV). To clarify the relationship between RTYV and RYSV, we determined the nucleotide sequence of the RTYV genome. The RTYV genome consists of 14,029 nucleotides. The overall nucleotide identity between RTYV and RYSV was 98.5%, and the deduced amino acid sequence identities between the seven genes in RTYV and RYSV ranged from 82.3 to 99.7%. The sequence information from RTYV revealed that these two viruses should be categorized as members of the same species rather than distinct species.
    Archives of Virology 11/2009; 155(2):243-5. · 2.28 Impact Factor