Molecules, Morphology, Fossils, and the Relationship of Angiosperms and Gnetales

Section of Evolution and Ecology, University of California, Davis, California, 95616, USA.
Molecular Phylogenetics and Evolution (Impact Factor: 4.02). 07/1998; 9(3):448-62. DOI: 10.1006/mpev.1998.0506
Source: PubMed

ABSTRACT Morphological analyses of seed plant phylogeny agree that Gnetales are the closest living relatives of angiosperms, but some studies indicate that both groups are monophyletic, while others indicate that angiosperms are nested within Gnetales. Molecular analyses of several genes agree that both groups are monophyletic, but differ on whether they are related. Conflicts among morphological trees depend on the interpretation of certain characters; when these are analyzed critically, both groups are found to be monophyletic. Conflicts among molecular trees may reflect the rapid Paleozoic radiation of seed plant lines, aggravated by the long branches leading to extant taxa. Trees in which angiosperms are not related to Gnetales conflict more with the stratigraphic record. Even if molecular data resolve the relationships among living seed plant groups, understanding of the origin of angiosperm organs will require integration of fossil taxa, necessarily using morphology.

Download full-text


Available from: James A. Doyle, May 13, 2014
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Molecular data on relationships within angiosperms confirm the view that their increasing morphological diversity through the Cretaceous reflected their evolutionary radiation. Despite the early appearance of aquatics and groups with simple flowers, the record is consistent with inferences from molecular trees that the first angiosperms were woody plants with pinnately veined leaves, multiparted flowers, uniovulate ascidiate carpels, and columellar monosulcate pollen. Molecular data appear to refute the hypothesis based on morphology that angiosperms and Gnetales are closest living relatives. Morphological analyses of living and fossil seed plants that assume molecular relationships identify glossopterids, Bennettitales, and Caytonia as angiosperm relatives; these results are consistent with proposed homologies between the cupule of glossopterids and Caytonia and the angiosperm bitegmic ovule. Jurassic molecular dates for the angiosperms may be reconciled with the fossil record if the first angiosperms we...
    Annual Review of Earth and Planetary Sciences 05/2012; 40:301-326. DOI:10.1146/annurev-earth-042711-105313 · 10.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The study of developmental genetics is providing insights into how plant morphology can and does evolve, and into the fundamental nature of specific organs. This new understanding has the potential to revise significantly the way we think about seed plant evolution, especially with regard to reproductive structures. Here, we have sought to take a step in bridging the divide between genetic data and critical fields such as paleobotany and systematics. We discuss the evidence for several evolutionarily important interpretations, including the possibility that ovules represent meristematic axes with their own type of lateral determinate organs (integuments) and a model that considers carpels as analogs of complex leaves. In addition, we highlight the aspects of reproductive development that are likely to be highly labile and homoplastic, factors that have major implications for the understanding of seed plant relationships. Although these hypotheses may suggest that some long-standing interpretations are misleading, they also open up whole new avenues for comparative study and suggest concrete best practices for evolutionary analyses of development.
    New Phytologist 03/2012; 194(4):910-23. DOI:10.1111/j.1469-8137.2012.04091.x · 6.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent attempts to address the long-debated 'origin' of the angiosperms depend on a phylogenetic framework derived from a matrix of taxa versus characters; most assume that empirical rigour is proportional to the size of the matrix. Sequence-based genotypic approaches increase the number of characters (nucleotides and indels) in the matrix but are confined to the highly restricted spectrum of extant species, whereas morphology-based approaches increase the number of phylogenetically informative taxa (including fossils) at the expense of accessing only a restricted spectrum of phenotypic characters. The two approaches are currently delivering strongly contrasting hypotheses of relationship. Most molecular studies indicate that all extant gymnosperms form a natural group, suggesting surprisingly early divergence of the lineage that led to angiosperms, whereas morphology-only phylogenies indicate that a succession of (mostly extinct) gymnosperms preceded a later angiosperm origin. Causes of this conflict include: (i) the vast phenotypic and genotypic lacuna, largely reflecting pre-Cenozoic extinctions, that separates early-divergent living angiosperms from their closest relatives among the living gymnosperms; (ii) profound uncertainty regarding which (a) extant and (b) extinct angiosperms are most closely related to gymnosperms; and (iii) profound uncertainty regarding which (a) extant and (b) extinct gymnosperms are most closely related to angiosperms, and thus best serve as 'outgroups' dictating the perceived evolutionary polarity of character transitions among the early-divergent angiosperms. These factors still permit a remarkable range of contrasting, yet credible, hypotheses regarding the order of acquisition of the many phenotypic characters, reproductive and vegetative, that distinguish 'classic' angiospermy from 'classic' gymnospermy. The flower remains ill-defined and its mode (or modes) of origin remains hotly disputed; some definitions and hypotheses of evolutionary relationships preclude a role for the flower in delimiting the angiosperms. We advocate maintenance of parallel, reciprocally illuminating programmes of morphological and molecular phylogeny reconstruction, respectively supported by homology testing through additional taxa (especially fossils) and evolutionary-developmental genetic studies that explore genes potentially responsible for major phenotypic transitions.
    Journal of Experimental Botany 02/2006; 57(13):3471-503. DOI:10.1093/jxb/erl128 · 5.79 Impact Factor