Article

Microsatellite markers for genetic population studies in Glossina palpalis gambiensis (Diptera: Glossinidae).

CIRADES Bobo Dioylasso, Burkina Faso.
Annals of the New York Academy of Sciences (Impact Factor: 4.38). 07/1998; 849:39-44. DOI: 10.1111/j.1749-6632.1998.tb11031.x
Source: PubMed

ABSTRACT Little is known about intraspecific variability in tsetse flies and its consequences for vectorial capacity. Microsatellite markers have been developed for Glossina palpalis gambiensis. Three loci have been identified and showed size polymorphisms for insectarium samples. G. palpalis gambiensis from Burkina Faso were also subjected to PCR to investigate then genetic variability. Amplifications were observed in different species belonging to the palpalis group. These molecular markers will be useful to estimate gene flow within G. palpalis gambiensis populations and analysis could be extended to related species.

0 Bookmarks
 · 
55 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The emergence and massive spread of bluetongue in Western Europe during 2006-2008 had disastrous consequences for sheep and cattle production and confirmed the ability of Palaearctic Culicoides (Diptera: Ceratopogonidae) to transmit the virus. Some aspects of Culicoides ecology, especially host-seeking and feeding behaviors, remain insufficiently described due to the difficulty of collecting them directly on a bait animal, the most reliable method to evaluate biting rates.Our aim was to compare typical animal-baited traps (drop trap and direct aspiration) to both a new sticky cover trap and a UV-light/suction trap (the most commonly used method to collect Culicoides). Collections were made from 1.45 hours before sunset to 1.45 hours after sunset in June/July 2009 at an experimental sheep farm (INRA, Nouzilly, Western France), with 3 replicates of a 4 sites×4 traps randomized Latin square using one sheep per site. Collected Culicoides individuals were sorted morphologically to species, sex and physiological stages for females. Sibling species were identified using a molecular assay. A total of 534 Culicoides belonging to 17 species was collected. Abundance was maximal in the drop trap (232 females and 4 males from 10 species) whereas the diversity was the highest in the UV-light/suction trap (136 females and 5 males from 15 species). Significant between-trap differences abundance and parity rates were observed. Only the direct aspiration collected exclusively host-seeking females, despite a concern that human manipulation may influence estimation of the biting rate. The sticky cover trap assessed accurately the biting rate of abundant species even if it might act as an interception trap. The drop trap collected the highest abundance of Culicoides and may have caught individuals not attracted by sheep but by its structure. Finally, abundances obtained using the UV-light/suction trap did not estimate accurately Culicoides biting rate.
    Parasites & Vectors 06/2011; 4:119. · 3.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glossina palpalis palpalis (Diptera: Glossinidae) is widespread in west Africa, and is the main vector of sleeping sickness in Cameroon as well as in the Bas Congo Province of the Democratic Republic of Congo. However, little is known on the structure of its populations. We investigated G. p. palpalis population genetic structure in five sleeping sickness foci (four in Cameroon, one in Democratic Republic of Congo) using eight microsatellite DNA markers. A strong isolation by distance explains most of the population structure observed in our sampling sites of Cameroon and DRC. The populations here are composed of panmictic subpopulations occupying fairly wide zones with a very strong isolation by distance. Effective population sizes are probably between 20 and 300 individuals and if we assume densities between 120 and 2000 individuals per km2, dispersal distance between reproducing adults and their parents extends between 60 and 300 meters. This first investigation of population genetic structure of G. p. palpalis in Central Africa has evidenced random mating subpopulations over fairly large areas and is thus at variance with that found in West African populations of G. p. palpalis. This study brings new information on the isolation by distance at a macrogeographic scale which in turn brings useful information on how to organise regional tsetse control. Future investigations should be directed at temporal sampling to have more accurate measures of demographic parameters in order to help vector control decision.
    Parasites & Vectors 07/2011; 4:140. · 3.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Feeding success of free-living hematophagous insects depends on their ability to be active when hosts are available and to reach places where hosts are accessible. When the hematophagous insect is a vector of pathogens, determining the components of host-seeking behavior is of primary interest for the assessment of transmission risk. Our aim was to describe endo/exophagy and circadian host-seeking activity of Palaearctic Culicoides species, which are major biting pests and arbovirus vectors, using drop traps and suction traps baited with four sheep, as bluetongue virus hosts. Collections were carried out in the field, a largely-open stable and an enclosed stable during six collection periods of 24 hours in April/May, in late June and in September/October 2010 in western France. A total of 986 Culicoides belonging to 13 species, mainly C. brunnicans and C. obsoletus, was collected on animal baits. Culicoides brunnicans was clearly exophagic, whereas C. obsoletus was able to enter stables. Culicoides brunnicans exhibited a bimodal pattern of host-seeking activity with peaks just after sunrise and sunset. Culicoides obsoletus was active before sunset in spring and autumn and after sunset in summer, thus illustrating influence of other parameters than light, especially temperature. Description of host-seeking behaviors allowed us to discuss control strategies for transmission of Culicoides-borne pathogens, such as bluetongue virus. However, practical vector-control recommendations are difficult to provide because of the variation in the degree of endophagy and time of host-seeking activity.
    PLoS ONE 01/2012; 7(10):e48120. · 3.53 Impact Factor

Full-text (2 Sources)

View
0 Downloads
Available from
Sep 5, 2014