Intestinal permeability and contractility in murine colitis.

Department of Pharmacology, Erasmus University Rotterdam, The Netherlands.
Mediators of Inflammation (Impact Factor: 3.88). 02/1998; 7(3):163-8. DOI: 10.1080/09629359891090
Source: PubMed

ABSTRACT We developed an in vitro organ bath method to measure permeability and contractility simultaneously in murine intestinal segments. To investigate whether permeability and contractility are correlated and influenced by mucosal damage owing to inflammation, BALB/c mice were exposed to a 10% dextran sulphate sodium (DSS) solution for 8 days to induce colitis. The effect of pharmacologically induced smooth muscle relaxation and contraction on permeability was tested in vitro. Regional permeability differences were observed in both control and 10% DSS-treated mice. Distal colon segments were less permeable to 3H-mannitol and 14C-PEG 400 molecules compared with proximal colon and ileum. Intestinal permeability in control vs. 10% DSS mice was not altered, although histologic inflammation score and IFN-gamma pro-inflammatory cytokine levels were significantly increased in proximal and distal colon. IL-1beta levels were enhanced in these proximal and distal segments, but not significantly different from controls. Any effect of pharmacologically induced contractility on intestinal permeability could not be observed. In conclusion, intestinal permeability and contractility are not correlated in this model of experimentally induced colitis in mice. Although simultaneous measurement in a physiological set-up is possible, this method has to be further validated.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many immune down-regulatory molecules have been isolated from parasites, including cystatin (cystain protease inhibitor). In a previous study, we isolated and characterized Type I cystatin (CsStefin-1) of the liver fluke, Clonorchis sinensis. To investigate whether the CsStefin-1 might be a new host immune modulator, we induced intestinal inflammation in mice by dextran sodium sulfate (DSS) and treated them with recombinant CsStefin-1 (rCsStefin-1). The disease activity index (DAI) increased in DSS only-treated mice. In contrast, the DAI value was significantly reduced in rCsStefin-1-treated mice than DSS only-treated mice. In addition, the colon length of DSS only-treated mice was shorter than that of rCsStefin-1 treated mice. The secretion levels of IFN-γ and TNF-α in the spleen and mesenteric lymph nodes (MLNs) were significantly increased by DSS treatment, but the level of TNF-α in MLNs was significantly decreased by rCsStefin-1 treatment. IL-10 production in both spleen and MLNs was significantly increased, and IL-10(+)F4/80(+) macrophage cells were significantly increased in the spleen and MLNs of rCsStefin-1 treated mice after DSS treatment. In conclusion, rCsStefin-1 could reduce the intestinal inflammation occurring after DSS treatment, these effects might be related with recruitment of IL-10 secreting macrophages.
    The Korean Journal of Parasitology 09/2011; 49(3):245-54. · 0.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Both intestinal permeability and contractility are altered in inflammatory bowel disease. Little is known about their mutual relation. Therefore, an in vitro organ bath technique was developed to investigate the simultaneous effects of inflammation on permeability and smooth muscle contractility in different segments of the colon. BALB/c mice were exposed to a 10% dextran sulphate sodium drinking water solution for 7 days to induce a mild colitis, while control mice received normal tap water. Intestinal segments were placed in an oxygenated organ bath containing Krebs buffer. Permeability was measured by the transport of the marker molecules 3H-mannitol and 14C-polyethyleneglycol 4000. Contractility was measured through a pressure sensor. Smooth muscle relaxation was obtained by salbutamol and l-phenylephrine, whereas contraction was achieved by carbachol and 1-(3-chlorophenyl)-biguanide. The intensity of mucosal inflammation increased throughout the colon. Also, regional differences were observed in intestinal permeability. In both normal and inflamed distal colon segments, permeability was diminished compared with proximal colon segments and the non-inflamed ileum. Permeability in inflamed distal colon segments was significantly decreased compared with normal distal segments. Pharmacologically induced relaxation of smooth muscles did not affect this diminished permeability, although an increased motility positively affected permeability in inflamed and non-inflamed distal colon. Inflammation and permeability is inversely related. The use of pro-kinetics could counteract this disturbed permeability and, in turn, could regulate the disturbed production of inflammatory mediators.
    Mediators of Inflammation 03/2003; 12(1):21-7. · 3.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We recently demonstrated that the pattern recognition receptors (PRRs) toll-like receptor 2 (TLR2), TLR4, and CD14 are expressed in mouse colonic epithelium in a compartmentalized manner. Here we report the localization of TLR5, the receptor for bacterial flagellin, and its distinctive down-regulation during experimental colitis. Guts from normal BALB/c mice and those with dextran sodium sulfate (DSS)-induced colitis were compared. Each gut was divided into seven segments (stomach, small intestine [three parts], and colon [three parts]), and epithelial cells and crypt units were collected by scraping and EDTA treatment, respectively. Northern blotting showed that TLR5 mRNA was preferentially expressed in the epithelium of the proximal colon in normal mice. Laser capture microdissection coupled to reverse transcriptase PCR confirmed this localization. TLR5 protein expression reflected mRNA expression, as evidenced by Western blotting. In mice with acute colitis, inflammation occurred mainly in the distal colon. Interestingly, while TLR2, TLR4, and CD14 were up-regulated in the inflamed colon, TLR5 was down-regulated at both the mRNA and protein levels. Decreased TLR5 expression was more evident during chronic colitis. Additional in vitro studies using a mouse cell line, Colon-26, showed that gamma interferon (IFN-gamma) time- and dose-dependently down-regulates TLR5. In conclusion, epithelial cells, mainly in the proximal colon, constitutively express TLR5. TLR5 expression is down-regulated in vivo during acute and chronic DSS-induced colitis, in contrast to the expression of TLR2, TLR4, and CD14. The mechanism governing TLR5 regulation may therefore differ from that controlling other PRRs. Finally, IFN-gamma may be involved in down-regulating TLR5 expression.
    Clinical and Vaccine Immunology 02/2006; 13(1):132-8. · 2.60 Impact Factor

Full-text (3 Sources)

Available from
Jun 3, 2014