Article

Cognitive decline is faster in Lewy body variant than in Alzheimer's disease.

Department of Neurosciences, University of California, San Diego and San Diego Veteran's Affairs Medical Center, 92161, USA.
Neurology (Impact Factor: 8.3). 08/1998; 51(2):351-7. DOI: 10.1212/WNL.51.2.351
Source: PubMed

ABSTRACT To quantify the rate of cognitive decline on the Mini-Mental State Examination (MMSE) in autopsy-diagnosed Lewy body variant (LBV) of Alzheimer's disease (AD) cases. We hypothesized that LBV patients would have a faster cognitive decline and shorter survival compared with patients with pure AD.
Prior reports have shown extrapyramidal signs to be associated with a poorer prognosis in AD. It has been suggested that LBV is often characterized by a rapidly progressive course. Few data are available regarding the rate of cognitive decline in autopsy-confirmed LBV dementia cases.
We searched the databases of the University of California-San Diego Alzheimer's Disease Research Center and the Consortium to Establish a Registry in Alzheimer's Disease (CERAD) for dementia cases with 1) an autopsy diagnosis of definite or probable AD (CERAD criteria) with concomitant Lewy bodies and 2) longitudinal MMSE assessments. This resulted in a series of 40 LBV cases and 148 AD cases without Lewy bodies, with comparable baseline MMSE scores, age, and education. The rate of cognitive decline was calculated as the baseline MMSE -- final MMSE. Methods were devised to reduce floor effects on the MMSE.
The average rate of cognitive decline was -5.8 +/- 4.5 points/y in LBV and -4.1 +/- 3.0 points/y in AD (t-test, p < 0.01). The LBV group declined a similar amount on the MMSE (means, -10.0 versus -9.6 points) over a significantly shorter time interval (1.9 versus 2.7 years; p = 0.005) than did AD patients. At baseline, the mean MMSE scores were nearly identical (18.2 in LBV; 17.8 in AD), but on follow-up examinations approximately 1, 2, and 3 years later, there were intergroup mean differences of 1.8 points (two-tailed p = 0.19), 4.2 points (p = 0.04), and 5.6 points (p = 0.03), respectively. The LBV cases had shorter survival time from the onset of cognitive symptoms (7.7 +/- 3.0 years versus 9.3 +/- 3.5 years; p = 0.007) and a shorter mean survival after entry/baseline, which was of marginal significance (3.6 versus 4.1 years; p = 0.11).
This study demonstrates that LBV is characterized by a faster cognitive decline and accelerated mortality compared with AD.

1 Follower
 · 
85 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies with strong selection biases propose that alpha-synucleinopathy (AS) spreads upwards and downwards in the neuraxis from the medulla, that amygdala-dominant AS is strongly associated with Alzheimer's disease (AD), and that a more severe involvement of the cerebral cortex is correlated with increasing risk of dementia. This study examines the association of AS patterns and observed neuropsychological symptoms in brains of a population-representative donor cohort. Brains donated in 2 out of 6 cognitive function and ageing study cohorts (Cambridgeshire and Nottingham) were examined. Over 80% were >80 years old at death. The respondents were evaluated prospectively in life for cognitive decline and dementia. Immunocytochemistry for tau and alpha-synuclein (using LB509 by Zymed Laboratories) was carried out in 208 brains to establish Braak stage and the pattern and severity of AS following the dementia with Lewy bodies (DLB) consensus recommendations. Dementia, specific neuropsychological measures as measured using the Cambridge cognitive examination, the presence of hallucinations and Parkinson's disease were investigated. Four patterns of AS were observed: no AS pathology (n = 92), AS pathology following the DLB consensus guidelines (n = 33, of which five were 'neocortical'), amygdala-predominant AS (n = 18), and other AS patterns (n = 33). Each group was subdivided according to high/low neurofibrillary tangles (NFT) Braak stage. Results showed no association between dementia and these patterns of AS, adjusting for the presence of NFT or not. The risk of visual hallucinations shows a weak association with AS in the substantia nigra (odds ratio (OR) = 3.2; 95% confidence interval (CI) 0.5 to 15.5; P = 0.09) and amygdala (OR = 3.0; 95% CI 0.7 to 12.3; P = 0.07). The analysis is similar for auditory hallucinations in subcortical regions. Among the whole population of older people, AS does not increase the risks for dementia, irrespective of Braak stage of NFT pathology. There was no evidence that the pattern of AS pathology in cortical areas was relevant to the risk of hallucination. In general, the hypothesis that AS as measured using these methods per se is a key determinant of cognitive clinical phenotypes is not supported.
    Alzheimer's Research and Therapy 12/2015; 7(1). DOI:10.1186/s13195-015-0101-x · 3.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: From a neuropathological perspective, elderly patients who die with a clinical diagnosis of sporadic Alzheimer’s disease (AD) are a heterogeneous group with several different pathologies contributing to the AD phenotype. This poses a challenge when searching for low effect size susceptibility genes for AD. Further, control groups may be contaminated by significant numbers of preclinical AD patients, which also reduces the power of genetic association studies. Here, we discuss how cerebrospinal fluid and imaging biomarkers can be used to increase the chance of finding novel susceptibility genes and as a means to study the functional consequences of risk alleles.
    03/2014; 3(1):19-25. DOI:10.1007/s40142-014-0062-6
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multiple different pathological protein aggregates are frequently seen in human postmortem brains and hence mixed pathology is common. Mixed dementia on the other hand is less frequent and neuropathologically should only be diagnosed if criteria for more than one full blown disease are met. We quantitatively measured the amount of hyperphosphorylated microtubule associated tau (HP-τ), amyloid-β protein (Aβ) and α-synuclein (α-syn) in cases that were neuropathologically diagnosed as mixed Alzheimer's disease (AD) and neocortical Lewy body disease (LBD) but clinically presented either as dementia due to AD or LBD, the latter including dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD). Our study group consisted of 28 cases (mean age, 76.11 SE: ±1.29 years; m:f, 17:11) of which 19 were neuropathologically diagnosed as mixed AD/DLB. Clinically, 8 mixed AD/DLB cases were diagnosed as AD (cAD), 8 as DLB (cDLB) and 3 as PDD (cPDD). In addition, we investigated cases that were both clinically and neuropathologically diagnosed as either AD (pure AD; n = 5) or DLB/neocortical LBD (pure DLB; n = 4). Sections from neocortical, limbic and subcortical areas were stained with antibodies against HP-τ, Aβ and α-syn. The area covered by immunopositivity was measured using image analysis. cAD cases had higher HP-τ loads than both cDLB and cPDD and the distribution of HP-τ in cAD was similar to the one observed in pure AD whilst cDLB showed comparatively less hippocampal HP-τ load. cPDD cases showed lower HP-τ and Aβ loads and higher α-syn loads. Here, we show that in neuropathologically mixed AD/DLB cases both the amount and the topographical distribution of pathological protein aggregates differed between distinct clinical phenotypes. Large-scale clinicopathological correlative studies using a quantitative methodology are warranted to further elucidate the neuropathological correlate of clinical symptoms in cases with mixed pathology.
    Acta Neuropathologica 03/2015; 129(5). DOI:10.1007/s00401-015-1406-3 · 9.78 Impact Factor