Article

Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov.

Laboratoire de Microbiologie des Sols, ORSTOM, Dakar, Senegal, West Africa.
International journal of systematic bacteriology (Impact Factor: 2.27). 04/1998; 48 Pt 2:369-82. DOI: 10.1099/00207713-48-2-369
Source: PubMed

ABSTRACT A collection of strains isolated from root nodules of Acacia species in Senegal was analysed previously by electrophoresis of total cell protein, auxanographic tests, rRNA-DNA hydridization, 16S rRNA gene sequencing, DNA base composition and DNA-DNA hybridization [de Lajudie, P., Willems, A., Pot, B. & 7 other authors (1994). Int J Syst Bacteriol 44, 715-733]. Strains from Acacia were shown to belong to two groups, Sinorhizobium terangae, and a so-called gel electrophoretic cluster U, which also included some reference strains from Brazil. Further taxonomic characterization of this group using the same techniques plus repetitive extragenic palindromic-PCR and nodulation tests is presented in this paper. Reference strains from Sudan and a number of new rhizobia isolated from nodules of Acacia senegal, Acacia tortilis subsp. raddiana and Prosopis juliflora in Senegal were included. As a result of this polyphasic approach, the creation of a new species, Mesorhizobium plurifarium, is proposed for a genotypically and phenotypically distinct group corresponding to the former cluster U and containing strains isolated from Acacia, Leucaena, Prosopis and Chamaecrista in West Africa (Senegal), East Africa (Sudan) and South America (Brazil). The type strain of Mesorhizobium plurifarium ORS 1032 has been deposited in the LMG collection as LMG 11892.

0 Bookmarks
 · 
130 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: due to the addition of several new genera and species to this important bacterial group. Recent studies have shown the existence of a great diversity among nitrogen-fixing bacteria isolated from different legumes. Currently, more than 98 species belonging to 14 genera of α- and β- proteobacteria have been described as rhizobia. The genera Rhizobium, Mezorhizobium, Ensifer (formerly Sinorhizobium), Bradyrhizobium, Phyllobacterium, Microvirga, Azorhizobium, Ocrhobactrum, Methylobacterium, Devosia, Shinella (Class of α- proteobacteria), Burkholderia, Cupriavidus (formerly Ralstonia) (Class of β-proteobacteria) and some γ-proteobacteria, form the set of the bacteria known as legume’s symbionts. There is certainly much to discover, since only 23% of known legumes were identified specifically for symbiotic relationship up to date. The discovery of new symbionts associated with legumes is necessary to gain deep insight into the taxonomy of the rhizobia. A literature review of the currently recognized classification of rhizobia is presented in this paper.
    01/2014; Vol. 4(6):616-639,. DOI:10.9734/BMRJ/2014/5635
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Desmanthus paspalaceus (Lindm.) Burkart belongs to the D. virgatus complex, subfamily Mimosoidae. The known potential as livestock fodder of several of these legumes prompted us to undertake a phenotypic, molecular, and symbiotic characterization of the D. paspalaceus symbionts in the Santa Fe province, Argentina. The rhizobia collected-containing isolates with different abiotic-stress tolerances-showed a remarkable genetic diversity by PCR fingerprinting, with 11 different amplification profiles present among 20 isolates. In selected isolates 16S-rDNA sequencing detected mesorhizobia (60%) and rhizobia (40%) within the collection, in contrast to the genus of the original inoculant strain CB3126-previously isolated from Leucaena leucocephala-that we typified here through its 16S rDNA as Sinorhizobium terangae. The results revealed the establishment by diverse bacterial genera -rhizobia, sinorhizobia, and mesorhizobia- of full N2-fixing symbiotic associations with D. paspalaceus. This diversity was paralleled by the presence of at least two different nodC allelic variants. The identical nodC alleles of the Mesorhizobia sp. 10.L.4.2 and 10.L.5.3 notably failed to group within any of the currently described rhizo-/brady-/azorhizobial nodC clades. Interestingly, the nodC from S. terangae CB3126 clustered close to homologs from common bean nodulating rhizobia, but not with the nodC from S. terangae WSM1721 that nodulates Acacia. No previous data were available on nod-gene phylogeny for Desmanthus symbionts. A field assay indicated that inoculation of D. paspalaceus with the local Rhizobium sp. 10L.11.4 produced higher aerial-plant dry weights compared to S. teranga CB3126-inoculated plants. Neither the mesorhizobia 10.L.4.2 or 10.L.5.3 nor the rhizobium 10L.11.4 induced root nodules in L. leucocephala or P. vulgaris. The results show that some of the local isolates have remarkable tolerances to several abiotic stresses including acidity, salt, and temperature; while exhibiting prominent N2 fixation; thus indicating suitability as candidates for inoculation of D. paspalaceus.
    PLoS ONE 08/2014; 9(8):e104636. DOI:10.1371/journal.pone.0104636 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Legumes form a large group of plants that constitute the third largest family of angiosperms, including near 20,000 species and 750 genera. Most of them have the ability to establish symbioses with diazotrophic bacteria, collectively known as rhizobia, which induce root nodules where biological nitrogen fixation takes place, conferring legumes a relevant ecological advantage. This group of bacteria that for many years was thought to be formed by a scarce number of genera and species within alpha proteobacteria, shows nowadays an important genetic diversity including species phylogenetically divergent both in core and symbiotic genes sequences. Together with rhizobia, other endophytic bacteria are present in legume nodules coexisting with rhizobial strains and their ecological role remains unknown in most cases, but they likely have an effect in plant health, plant growth or even in the rhizobia-legume symbiosis. In this review we present an overview of the associations of bacteria with legumes, the current available knowledge on the phylogenetic diversity of both rhizobia and endophytic bacteria inhabiting root nodules, and the symbiotic features used to define symbiovars in rhizobia.
    Critical Reviews in Plant Sciences 06/2015; 34. DOI:10.1080/07352689.2014.897899 · 5.29 Impact Factor

Full-text (2 Sources)

Download
123 Downloads
Available from
May 22, 2014