Fe65 and the protein network centered around the cytosolic domain of the Alzheimer's beta-amyloid precursor protein

Dipartimento di Biochimica e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.
FEBS Letters (Impact Factor: 3.34). 09/1998; 434(1-2):1-7. DOI: 10.1016/S0014-5793(98)00941-7
Source: PubMed

ABSTRACT A distinctive tract of all the forms of Alzheimer's disease is the extracellular deposition of a 40-42/43 amino acid-long peptide derived from the so-called beta-amyloid precursor protein (APP). This is a membrane protein of unknown function, whose short cytosolic domain has been recently demonstrated to interact with several proteins. One of these proteins, named Fe65, has the characteristics of an adaptor protein; in fact, it possesses three protein-protein interaction domains: a WW domain and two PID/PTB domains. The interaction with APP requires the most C-terminal PID/PTB domain, whereas the WW domain is responsible for the interaction with various proteins, one of which was demonstrated to be the mammalian homolog of the Drosophila enabled protein (Mena), which in turn interacts with the cytoskeleton. The second PID/PTB domain of Fe65 binds to the CP2/LSF/LBP1 protein, which is an already known transcription factor. The other proteins interacting with the cytosolic domain of APP are the G(o) heterotrimeric protein, APP-BP1 and X11. The latter interacts with APP through a PID/PTB domain and possesses two other protein-protein interaction domains. The small size of the APP cytodomain and the overlapping of its regions involved in the binding of Fe65 and X11 suggest the existence of competitive mechanisms regulating the binding of the various ligands to this cytosolic domain. In this short review the possible functional roles of this complex protein network and its involvement in the generation of Alzheimer's phenotype are discussed.

  • [Show abstract] [Hide abstract]
    ABSTRACT: A number of key regulatory proteins contain one or two copies of the WW domain known to mediate protein-protein interaction via proline-rich motifs, such as PPxY. The Hippo pathway components take advantage of this module to transduce tumor suppressor signaling. It is becoming evident that tyrosine phosphorylation is a critical regulator of the WW proteins. Here, we review the current knowledge on the involved tyrosine kinases and their roles in regulating the WW proteins. © 2015 by the Society for Experimental Biology and Medicine.
    Experimental Biology and Medicine 01/2015; DOI:10.1177/1535370214565991 · 2.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The transfer of acetyl groups from acetyl coenzyme A to the ε amino group of internal lysine residues is catalyzed by Tip60, which is in the MYST family of nuclear histone acetyltransferases (HATs). The tyrosine phosphorylation of Tip60 seems to be a unique modification. We present evidence that Tip60 is modified on tyrosine 327 by Abl kinase. We show that this causes functional changes in HAT activity and the subcellular localization of TIP60, which forms a complex with Abl kinase. The Tip60 mutation Y327F abolished tyrosine phosphorylation, reduced the inhibition of Tip60 HAT activity, and caused G0-G1 arrest and association with FE65. Thus, our findings for the first time suggested a novel regulation mechanism of Tip60. Regulation was through phosphorylation of tyrosine 327 by Abl tyrosine kinase and depended on environmental conditions, suggesting that the tyrosine residue of Tip60 is important for the activation process.
    The Open Biochemistry Journal 08/2013; 7(1):66-72. DOI:10.2174/1874091X20130621002
    This article is viewable in ResearchGate's enriched format
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Advances in research and technology has increased our quality of life, allowed us to combat diseases, and achieve increased longevity. Unfortunately, increased longevity is accompanied by a rise in the incidences of age-related diseases such as Alzheimer's disease (AD). AD is the sixth leading cause of death, and one of the leading causes of dementia amongst the aged population in the USA. It is a progressive neurodegenerative disorder, characterized by the prevalence of extracellular Aβ plaques and intracellular neurofibrillary tangles, derived from the proteolysis of the amyloid precursor protein (APP) and the hyperphosphorylation of microtubule-associated protein tau, respectively. Despite years of extensive research, the molecular mechanisms that underlie the pathology of AD remain unclear. Model organisms, such as the nematode, Caenorhabditis elegans, present a complementary approach to addressing these questions. C. elegans has many advantages as a model system to study AD and other neurodegenerative diseases. Like their mammalian counterparts, they have complex biochemical pathways, most of which are conserved. Genes in which mutations are correlated with AD have counterparts in C. elegans, including an APP-related gene, apl-1, a tau homolog, ptl-1, and presenilin homologs, such as sel-12 and hop-1. Since the neuronal connectivity in C. elegans has already been established, C. elegans is also advantageous in modeling learning and memory impairments seen during AD. This article addresses the insights C. elegans provide in studying AD and other neurodegenerative diseases. Additionally, we explore the advantages and drawbacks associated with using this model.
    Frontiers in Genetics 09/2014; 5:279. DOI:10.3389/fgene.2014.00279


Available from