Article

Epitopes of human chorionic gonadotropin and their relationship to immunogenicity and cross-reactivity of beta-chain mutants.

University College London Medical School, Immunology Department, United Kingdom.
American journal of reproductive immunology (New York, N.Y.: 1989) (Impact Factor: 2.67). 09/1998; 40(3):210-4. DOI: 10.1111/j.1600-0897.1998.tb00414.x
Source: PubMed

ABSTRACT Human chrionic gonadotropin (hCG) is a placental glycoprotein hormone, a heterodimeric molecule, consisting of alpha and beta chains. It induces the synthesis of progesterone, which is essential for the maintenance of the fertilized egg. Antibodies directed against hCG can, therefore, prevent pregnancy and serve as a vaccine. hCG belongs to the glycoprotein hormone family and shares the alpha chain with the other members. The beta chain is a hormone-specific subunit that is unique to hCG, but still possesses 85% amino acid homology with the beta chain of luteinizing hormone (LH), which means that prolonged immunization with hCG produces antibodies that cross-react with LH.
We have taken an approach involving the mutation of beta hCG to eliminate cross-reactive epitopes without affecting the natural folding of the polypeptide chain and thus the unique beta hCG-specific epitopes.
Several mutants have been constructed that have maintained the binding to hCG-specific monoclonal antibodies (mAbs) but have lost the ability to bind to a panel of LH cross-reactive mAbs. To investigate the immunogenicity of selected mutants, mice were immunized with expression plasmid DNA, containing the gene for wild-type beta hCG and two mutants: mutant 3, with four amino acid substitutions (68 Arg-->Glu; 74 Arg-->Ser; 75 Gly-->His; 79 Val-->His), and mutant 7, with a single amino acid substitution (68 Arg-->Glu).
Although both mutants were able to elicit antibody responses in at least some animals, the levels were less than those seen with the wild-type beta hCG DNA, and there seems still to be a residual cross-reactivity with LH. Attempts to improve the immunogenicity of the mutants and to further modify the sequence to remove the cross-reactivity are currently underway.

0 Followers
 · 
42 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Kinetics of protein-protein or ligand-ligate interaction has predominantly been studied by optical spectroscopy (particularly fluorescence) and surface plasmon resonance biosensors. Almost all such studies are based on association kinetics between ligand-ligate and suffer from certain methodological and interpretational limitations. Therefore, kinetic analyses of dissociation data of such interactions become indispensable. In the present investigation, the radiolabeled human chorionic gonadotropin-beta ((125)IhCGbeta) was employed as a probe and nitrocellulose (NC) as a solid support to immobilize monoclonal antibody (MAb) G(1)G(10).1. The NC-G(1)G(10).1-(125)IhCGbeta complex (NC(com)) was prepared and the dissociation of radiolabeled hCGbeta was carried out in the presence of excess unlabeled ligate. From the experimental dissociation data under varying ionic strength, dissociation constants (k(- 1)), association constants (k(+1)) and affinity constants (k(a)) were calculated. The values obtained were utilized in exploring the amino acid residues constituting an epitopic region of hCGbeta involved in interaction with the complementary paratope on MAb G(1)G(10).1. Kinetic data of the present study supported our recently published findings [using single step-solid phase radioimmunoassay (SS-SPRIA)] that the core region of hCGbeta epitope consists of Arg (94,95) and Asp (99) while a Lys (104) and a His (106) are in proximity to the core epitopic region. Based on the results of present investigation, we conclude that dissociation kinetics coupled with SS-SPRIA unequivocally provides considerable insight into the study of ligand-ligate interactions and epitope analysis.
    Growth factors (Chur, Switzerland) 12/2008; 26(6):331-42. DOI:10.1080/08977190802445354 · 3.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Following priming and boosting of mice with a DNA vector pEE6DeltaS-hCGss expressing sequences encoding a transmembrane version of the beta-chain of human chorionic gonadotropin (hCGbeta), we failed to detect appreciable levels of specific antibody. However, subsequent challenge with hCG protein in Ribi adjuvant elicited a strong and rapid secondary immune response. This response was of comparable magnitude to that produced following priming, boosting and challenge with protein in adjuvant. Thus, DNA vaccination with this vector is as efficient in generating B cell memory as is conventional immunization, but the memory generation occurs in the absence of an overt effector response. Despite an overall similar level of specific antibody, the DNA-vaccinated mice produced hCG-specific antibodies biased towards IgG2a and IgG2b isotypes, whereas the protein-vaccinated mice produced higher levels of IgG1 antibodies. Both Th1 and Th2 cytokines (interferon-gamma (IFN-gamma) and IL-4) were lower in the spleens of the DNA-immunized animals compared with the protein-Ribi-immunized animals, possibly suggesting a different level of helper T cell response to the two different modes of immunization.
    Clinical & Experimental Immunology 08/1999; 117(1):106-12. DOI:10.1046/j.1365-2249.1999.00941.x · 3.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proteins and peptides are comprised of both sequence-specific and conformation-specific epitopes. Sequence-specific epitopes are delineated by a peptide approach and other robust methods like competition assays, gene expression assays, synthetic peptide library based assays, etc. Available methods for deciphering conformation-specific epitopes are cumbersome (X-ray crystallography, etc.), time-consuming, and require expensive equipment. Therefore, it is indispensable to develop a simple method for identification and mapping of conformation-specific epitopes. In the present investigation, the radiolabeled human chorionic gonadotropin-beta ((125)IhCGbeta) was employed as a probe and nitrocellulose (NC) as a solid support to immobilize monoclonal antibody (MAb) G(1)G(10).1. The NC-G(1)G(10).1-(125)IhCGbeta complex (NC(com)) was prepared and the dissociation of radiolabeled hCGbeta was carried out in the presence of excess unlabeled ligate. From the experimental dissociation data under varying ionic strength, dissociation constants (k(-1)), association constants (k(+1)), and affinity constants (k(a)) were calculated. The values obtained were utilized in exploring the amino acid residues constituting an epitopic region of hCGbeta involved in interaction with the complementary paratope on MAb G(1)G(10).1. Kinetic data of the present study supported our recently published findings [using single step-solid phase radioimmunoassay (SS-SPRIA)] that the core region of a conformation-specific epitope of hCGbeta consists of Arg (94, 95) and Asp (99) while a Lys (104) and a His (106) are in proximity to the core epitopic region. Therefore, the results of the present investigation suggested that the dissociation kinetics coupled with SS-SPRIA unequivocally assists in deciphering amino acid residues constituting a conformation-specific epitope of hCGbeta.
    Journal of Immunoassay and Immunochemistry 02/2009; 30(1):1-17. DOI:10.1080/15321810802570277 · 0.73 Impact Factor