Article

Changes in brain activity during motor learning measured with PET: effects of hand of performance and practice.

Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
Journal of Neurophysiology (Impact Factor: 3.04). 11/1998; 80(4):2177-99.
Source: PubMed

ABSTRACT The aim of this study is to assess brain activity measured during continuous performance of design tracing tasks. Three issues were addressed: identification of brain areas involved in performing maze and square tracing tasks, investigation of differences and similarities in these areas related to dominant and nondominant hand performance, and most importantly, examination of the effects of practice in these areas. A total of 32 normal, right-handed subjects were instructed to move a pen with the dominant right hand (16 subjects) or nondominant left hand (16 subjects) continuously through cut-out maze and square patterns with their eyes closed during a 40-s positron emission tomography (PET) scan to measure regional blood flow. There were six conditions: 1) holding the pen on a writing tablet without moving it (rest condition); 2) tracing a maze without practice; 3) tracing the same maze after 10 min of practice; 4) tracing a novel maze; and tracing an easily learned square design at 5) high or 6) low speed. To identify brain areas generally related to continuous tracing, data analyses were performed on the combined data acquired during the five tracing scans minus rest conditions. Areas activated included: primary and secondary motor areas, somatosensory, parietal, and inferior frontal cortex, thalamus, and several cerebellar regions. Then comparisons were made between right- and left-hand performance. There were no significant differences in performance. As for brain activations, only primary motor cortex and anterior cerebellum showed activations that switched with hand of performance. All other areas, with the exception of the midbrain, showed activations that were common for both right- and left-hand performance. These areas were further analyzed for significant conditional effects. We found patterns of activation related to velocity in the contralateral primary motor cortex, related to unskilled performance in right premotor and parietal areas and left cerebellum, related to skilled performance in supplementary motor area (SMA), and related to the level of capacity at which subjects were performing in left premotor cortex, ipsilateral anterior cerebellum, right posterior cerebellum and right dentate nucleus. These findings demonstrate two important principles: 1) practice produces a shift in activity from one set of areas to a different area and 2) practice-related activations appeared in the same hemisphere regardless of the hand used, suggesting that some of the areas related to maze learning must code information at an abstract level that is distinct from the motor performance of the task itself.

0 Bookmarks
 · 
86 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Motor learning results from practice but also between practice sessions. After skill acquisition early consolidation results in less interference with other motor tasks and even improved performance of the newly learned skill. A specific significance of the primary motor cortex (M1) for early consolidation has been suggested. Since synchronized oscillatory activity is assumed to facilitate neuronal plasticity, we here investigate alterations of motor-cortical oscillations by means of event-related desynchronization (ERD) at alpha (8-12 Hz) and beta (13-30 Hz) frequencies in healthy humans. Neuromagnetic activity was recorded using a 306-channel whole-head magnetoencephalography (MEG) system. ERD was investigated in 15 subjects during training on a serial reaction time task and 10 minutes after initial training. The data were compared with performance during a randomly varying sequence serving as control condition. The data reveal a stepwise decline of alpha-band ERD associated with faster reaction times replicating previous findings. The amount of beta-band suppression was significantly correlated with reduction of reaction times. While changes of alpha power have been related to lower cognitive control after initial skill acquisition, the present data suggest that the amount of beta suppression represents a neurophysiological marker of early cortical reorganization associated with motor learning.
    Neuroscience 06/2014; · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the relationship between the frontal and sensorimotor cortices and motor learning, hemodynamic responses were recorded from the frontal and sensorimotor cortices using functional near infrared spectroscopy (NIRS) while healthy subjects performed motor learning tasks used in rehabilitation medicine. Whole-head NIRS recordings indicated that response latencies in the anterior dorsomedial prefrontal cortex (aDMPFC) were shorter than in other frontal and parietal areas. Furthermore, the increment rate of the hemodynamic responses in the aDMPFC across the eight repeated trials significantly correlated with those in the other areas, as well as with the improvement rate of task performance across the 8 repeated trials. In the second experiment, to dissociate scalp- and brain-derived hemodynamic responses, hemodynamic responses were recorded from the head over the aDMPFC using a multi-distance probe arrangement. Six probes (a single source probe and 5 detectors) were linearly placed 6 mm apart from each of the neighboring probes. Using independent component analyses of hemodynamic signals from the 5 source-detector pairs, we dissociated scalp- and brain-derived components of the hemodynamic responses. Hemodynamic responses corrected for scalp-derived responses over the aDMPFC significantly increased across the 8 trials and correlated with task performance. In the third experiment, subjects were required to perform the same task with and without transcranial direct current stimulation (tDCS) of the aDMPFC before the task. The tDCS significantly improved task performance. These results indicate that the aDMPFC is crucial for improved performance in repetitive motor learning.
    Frontiers in Human Neuroscience 05/2014; 8:292. · 2.90 Impact Factor
  • Source

Full-text

Download
421 Downloads
Available from
May 20, 2014